Suppr超能文献

基于自训练字典方法的转导式零样本学习

Transductive Zero-Shot Learning With a Self-Training Dictionary Approach.

作者信息

Yu Yunlong, Ji Zhong, Li Xi, Guo Jichang, Zhang Zhongfei, Ling Haibin, Wu Fei

出版信息

IEEE Trans Cybern. 2018 Jan 30. doi: 10.1109/TCYB.2017.2751741.

Abstract

As an important and challenging problem in computer vision, zero-shot learning (ZSL) aims at automatically recognizing the instances from unseen object classes without training data. To address this problem, ZSL is usually carried out in the following two aspects: 1) capturing the domain distribution connections between seen classes data and unseen classes data and 2) modeling the semantic interactions between the image feature space and the label embedding space. Motivated by these observations, we propose a bidirectional mapping-based semantic relationship modeling scheme that seeks for cross-modal knowledge transfer by simultaneously projecting the image features and label embeddings into a common latent space. Namely, we have a bidirectional connection relationship that takes place from the image feature space to the latent space as well as from the label embedding space to the latent space. To deal with the domain shift problem, we further present a transductive learning approach that formulates the class prediction problem in an iterative refining process, where the object classification capacity is progressively reinforced through bootstrapping-based model updating over highly reliable instances. Experimental results on four benchmark datasets (animal with attribute, Caltech-UCSD Bird2011, aPascal-aYahoo, and SUN) demonstrate the effectiveness of the proposed approach against the state-of-the-art approaches.

摘要

作为计算机视觉中一个重要且具有挑战性的问题,零样本学习(ZSL)旨在在没有训练数据的情况下自动识别来自未见对象类别的实例。为了解决这个问题,ZSL通常从以下两个方面进行:1)捕捉已见类别数据和未见类别数据之间的域分布联系,以及2)对图像特征空间和标签嵌入空间之间的语义交互进行建模。受这些观察结果的启发,我们提出了一种基于双向映射的语义关系建模方案,该方案通过将图像特征和标签嵌入同时投影到一个公共潜在空间来寻求跨模态知识转移。也就是说,我们有一个从图像特征空间到潜在空间以及从标签嵌入空间到潜在空间的双向连接关系。为了处理域转移问题,我们进一步提出了一种转导学习方法,该方法在一个迭代细化过程中制定类别预测问题,其中通过基于自训练的模型更新在高度可靠的实例上逐步增强对象分类能力。在四个基准数据集(带属性的动物、加州理工学院 - 加州大学圣地亚哥分校鸟类2011、aPascal - aYahoo和SUN)上的实验结果证明了所提出的方法相对于现有方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验