Suppr超能文献

VMAN:一种用于转导式零样本学习的虚拟主支柱对齐网络。

VMAN: A Virtual Mainstay Alignment Network for Transductive Zero-Shot Learning.

作者信息

Xie Guo-Sen, Zhang Xu-Yao, Yao Yazhou, Zhang Zheng, Zhao Fang, Shao Ling

出版信息

IEEE Trans Image Process. 2021;30:4316-4329. doi: 10.1109/TIP.2021.3070231. Epub 2021 Apr 16.

Abstract

Transductive zero-shot learning (TZSL) extends conventional ZSL by leveraging (unlabeled) unseen images for model training. A typical method for ZSL involves learning embedding weights from the feature space to the semantic space. However, the learned weights in most existing methods are dominated by seen images, and can thus not be adapted to unseen images very well. In this paper, to align the (embedding) weights for better knowledge transfer between seen/unseen classes, we propose the virtual mainstay alignment network (VMAN), which is tailored for the transductive ZSL task. Specifically, VMAN is casted as a tied encoder-decoder net, thus only one linear mapping weights need to be learned. To explicitly learn the weights in VMAN, for the first time in ZSL, we propose to generate virtual mainstay (VM) samples for each seen class, which serve as new training data and can prevent the weights from being shifted to seen images, to some extent. Moreover, a weighted reconstruction scheme is proposed and incorporated into the model training phase, in both the semantic/feature spaces. In this way, the manifold relationships of the VM samples are well preserved. To further align the weights to adapt to more unseen images, a novel instance-category matching regularization is proposed for model re-training. VMAN is thus modeled as a nested minimization problem and is solved by a Taylor approximate optimization paradigm. In comprehensive evaluations on four benchmark datasets, VMAN achieves superior performances under the (Generalized) TZSL setting.

摘要

转导式零样本学习(TZSL)通过利用(未标记的)未见图像进行模型训练,扩展了传统的零样本学习。零样本学习的一种典型方法是学习从特征空间到语义空间的嵌入权重。然而,大多数现有方法中学习到的权重受可见图像主导,因此不能很好地适应未见图像。在本文中,为了对齐(嵌入)权重以在可见/未见类别之间实现更好的知识转移,我们提出了虚拟支柱对齐网络(VMAN),它是为转导式零样本学习任务量身定制的。具体来说,VMAN被构建为一个绑定的编码器 - 解码器网络,因此只需要学习一个线性映射权重。为了在零样本学习中首次明确学习VMAN中的权重,我们为每个可见类别生成虚拟支柱(VM)样本,这些样本作为新的训练数据,在一定程度上可以防止权重偏向可见图像。此外,还提出了一种加权重建方案,并将其纳入语义/特征空间的模型训练阶段。通过这种方式,VM样本的流形关系得到了很好的保留。为了进一步对齐权重以适应更多未见图像,提出了一种新颖的实例 - 类别匹配正则化用于模型重新训练。因此,VMAN被建模为一个嵌套最小化问题,并通过泰勒近似优化范式求解。在四个基准数据集上的综合评估中,VMAN在(广义)TZSL设置下取得了优异的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验