Suppr超能文献

基于异质集成的填充准则在昂贵问题中的进化多目标优化。

Heterogeneous Ensemble-Based Infill Criterion for Evolutionary Multiobjective Optimization of Expensive Problems.

出版信息

IEEE Trans Cybern. 2019 Mar;49(3):1012-1025. doi: 10.1109/TCYB.2018.2794503. Epub 2018 Jan 31.

Abstract

Gaussian processes (GPs) are the most popular model used in surrogate-assisted evolutionary optimization of computationally expensive problems, mainly because GPs are able to measure the uncertainty of the estimated fitness values, based on which certain infill sampling criteria can be used to guide the search and update the surrogate model. However, the computation time for constructing GPs may become excessively long when the number of training samples increases, which makes it inappropriate to use them as surrogates in evolutionary optimization. To address this issue, this paper proposes to use ensembles as surrogates and infill criteria for model management in evolutionary optimization. A heterogeneous ensemble consisting of a least square support vector machine and two radial basis function networks is constructed to enhance the reliability of ensembles for uncertainty estimation. In addition to the original decision variables, a selected subset of the decision variables and a set of transformed variables are used as inputs of the heterogeneous ensemble to further promote the diversity of the ensemble. The proposed heterogeneous ensemble is compared with a GP and a homogeneous ensemble for infill sampling criteria in evolutionary multiobjective optimization. Experimental results demonstrate that the heterogeneous ensemble is competitive in performance compared with GPs and much more scalable in computational complexity to the increase in search dimension.

摘要

高斯过程(Gaussian processes,GPs)是在计算成本高昂的问题的代理辅助进化优化中最常用的模型,主要是因为 GPs 能够基于其测量估计的适应度值的不确定性,使用某些填充采样标准来指导搜索并更新代理模型。然而,当训练样本数量增加时,构建 GPs 的计算时间可能会变得过长,这使得它们不适合在进化优化中用作代理。为了解决这个问题,本文提出使用集成作为代理和模型管理的填充标准在进化优化中。构建了一个由最小二乘支持向量机和两个径向基函数网络组成的异构集成,以增强集成进行不确定性估计的可靠性。除了原始决策变量之外,选择的决策变量子集和一组变换变量被用作异构集成的输入,以进一步促进集成的多样性。将提出的异构集成与 GP 和同质集成进行了比较,以进行进化多目标优化中的填充采样标准。实验结果表明,与 GPs 相比,异构集成在性能上具有竞争力,并且在计算复杂度方面更具可扩展性,可适应搜索维度的增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验