Suppr超能文献

匹配更大的图像区域进行无约束人脸身份识别。

Matching Larger Image Areas for Unconstrained Face Identification.

出版信息

IEEE Trans Cybern. 2019 Aug;49(8):3191-3202. doi: 10.1109/TCYB.2018.2846579. Epub 2018 Jun 28.

Abstract

Many approaches to unconstrained face identification exploit small patches which are unaffected by distortions outside their locality. A larger area usually contains more discriminative information, but may be unidentifiable due to local appearance changes across its area, given limited training data. We propose a novel block-based approach, as a complement to existing patch-based approaches, to exploit the greater discriminative information in larger areas, while maintaining robustness to limited training data. A testing block contains several neighboring patches, each of a small size. We identify the matching training block by jointly estimating all of the matching patches, as a means of reducing the uncertainty of each small matching patch with the addition of the neighboring patch information, without assuming additional training data. We further propose a multiscale extension in which we carry out block-based matching at several block sizes, to combine complementary information across scales for further robustness. We have conducted face identification experiments using three datasets, the constrained Georgia Tech dataset to validate the new approach, and two unconstrained datasets, LFW and UFI, to evaluate its potential for improving robustness. The results show that the new approach is able to significantly improve over existing patch-based face identification approaches, in the presence of uncontrolled pose, expression, and lighting variations, using small training datasets. It is also shown that the new block-based scheme can be combined with existing approaches to further improve performance.

摘要

许多无约束人脸识别方法都利用不受局部外扭曲影响的小补丁。更大的区域通常包含更多有区别的信息,但由于局部外观在其区域内的变化,给定有限的训练数据,可能无法识别。我们提出了一种新的基于块的方法,作为对现有基于补丁的方法的补充,以利用更大区域中的更多有区别的信息,同时保持对有限训练数据的鲁棒性。测试块包含几个相邻的补丁,每个补丁的大小都很小。我们通过联合估计所有匹配的补丁来识别匹配的训练块,这是一种通过增加相邻补丁信息来减少每个小匹配补丁不确定性的方法,而无需假设额外的训练数据。我们进一步提出了一种多尺度扩展,在该扩展中,我们在几个块大小上进行基于块的匹配,以跨尺度组合互补信息,以提高鲁棒性。我们使用三个数据集进行了人脸识别实验,受限的佐治亚理工数据集用于验证新方法,而两个不受约束的数据集 LFW 和 UFI 用于评估其提高鲁棒性的潜力。结果表明,在存在不受控制的姿势、表情和光照变化的情况下,新的基于块的方法能够在使用小训练数据集的情况下,显著优于现有的基于补丁的人脸识别方法。还表明,新的基于块的方案可以与现有的方法结合使用,以进一步提高性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验