Suppr超能文献

结合多种描述符和学习到的背景统计信息实现有效的无约束人脸识别。

Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2011 Oct;33(10):1978-90. doi: 10.1109/TPAMI.2010.230. Epub 2010 Dec 23.

Abstract

Computer vision systems have demonstrated considerable improvement in recognizing and verifying faces in digital images. Still, recognizing faces appearing in unconstrained, natural conditions remains a challenging task. In this paper, we present a face-image, pair-matching approach primarily developed and tested on the "Labeled Faces in the Wild" (LFW) benchmark that reflects the challenges of face recognition from unconstrained images. The approach we propose makes the following contributions. 1) We present a family of novel face-image descriptors designed to capture statistics of local patch similarities. 2) We demonstrate how unlabeled background samples may be used to better evaluate image similarities. To this end, we describe a number of novel, effective similarity measures. 3) We show how labeled background samples, when available, may further improve classification performance, by employing a unique pair-matching pipeline. We present state-of-the-art results on the LFW pair-matching benchmarks. In addition, we show our system to be well suited for multilabel face classification (recognition) problem, on both the LFW images and on images from the laboratory controlled multi-PIE database.

摘要

计算机视觉系统在识别和验证数字图像中的人脸方面已经取得了相当大的进展。然而,在不受约束的自然条件下识别人脸仍然是一项具有挑战性的任务。在本文中,我们提出了一种主要针对“野外标记人脸”(LFW)基准进行开发和测试的人脸图像对匹配方法,该方法反映了从不受约束的图像中进行人脸识别的挑战。我们提出的方法做出了以下贡献。1)我们提出了一系列新的人脸图像描述符,旨在捕获局部补丁相似度的统计信息。2)我们展示了如何使用未标记的背景样本来更好地评估图像相似度。为此,我们描述了一些新颖、有效的相似性度量。3)我们展示了当有可用的标记背景样本时,如何通过采用独特的对匹配管道进一步提高分类性能。我们在 LFW 对匹配基准上取得了最先进的结果。此外,我们还展示了我们的系统非常适合于 LFW 图像和实验室控制的多 PIE 数据库图像上的多标签人脸分类(识别)问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验