Suppr超能文献

半监督负相关学习

Semisupervised Negative Correlation Learning.

作者信息

Chen Huanhuan, Jiang Bingbing, Yao Xin

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5366-5379. doi: 10.1109/TNNLS.2017.2784814. Epub 2018 Mar 1.

Abstract

Negative correlation learning (NCL) is an ensemble learning algorithm that introduces a correlation penalty term to the cost function of each individual ensemble member. Each ensemble member minimizes its mean square error and its error correlation with the rest of the ensemble. This paper analyzes NCL and reveals that adopting a negative correlation term for unlabeled data is beneficial to improving the model performance in the semisupervised learning (SSL) setting. We then propose a novel SSL algorithm, Semisupervised NCL (SemiNCL) algorithm. The algorithm considers the negative correlation terms for both labeled and unlabeled data for the semisupervised problems. In order to reduce the computational and memory complexity, an accelerated SemiNCL is derived from the distributed least square algorithm. In addition, we have derived a bound for two parameters in SemiNCL based on an analysis of the Hessian matrix of the error function. The new algorithm is evaluated by extensive experiments with various ratios of labeled and unlabeled training data. Comparisons with other state-of-the-art supervised and semisupervised algorithms confirm that SemiNCL achieves the best overall performance.

摘要

负相关学习(NCL)是一种集成学习算法,它在每个单独的集成成员的代价函数中引入了一个相关惩罚项。每个集成成员最小化其均方误差以及与集成中其他成员的误差相关性。本文分析了NCL,并揭示了对未标记数据采用负相关项有利于在半监督学习(SSL)设置中提高模型性能。然后,我们提出了一种新颖的SSL算法,即半监督NCL(SemiNCL)算法。该算法针对半监督问题考虑了标记数据和未标记数据的负相关项。为了降低计算和内存复杂度,基于分布式最小二乘算法推导了一种加速的SemiNCL。此外,基于对误差函数的海森矩阵的分析,我们推导了SemiNCL中两个参数的界限。通过使用各种标记和未标记训练数据比例进行的大量实验对新算法进行了评估。与其他最新的监督和半监督算法的比较证实,SemiNCL实现了最佳的整体性能。

相似文献

1
Semisupervised Negative Correlation Learning.半监督负相关学习
IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5366-5379. doi: 10.1109/TNNLS.2017.2784814. Epub 2018 Mar 1.
2
Regularized negative correlation learning for neural network ensembles.用于神经网络集成的正则化负相关学习
IEEE Trans Neural Netw. 2009 Dec;20(12):1962-79. doi: 10.1109/TNN.2009.2034144. Epub 2009 Nov 17.
4
Laplacian Welsch Regularization for Robust Semisupervised Learning.用于鲁棒半监督学习的拉普拉斯韦尔施正则化
IEEE Trans Cybern. 2022 Jan;52(1):164-177. doi: 10.1109/TCYB.2019.2953337. Epub 2022 Jan 11.
6
Large-Scale Robust Semisupervised Classification.大规模鲁棒半监督分类。
IEEE Trans Cybern. 2019 Mar;49(3):907-917. doi: 10.1109/TCYB.2018.2789420. Epub 2018 Jan 17.
8
Solution path for manifold regularized semisupervised classification.流形正则化半监督分类的求解路径
IEEE Trans Syst Man Cybern B Cybern. 2012 Apr;42(2):308-19. doi: 10.1109/TSMCB.2011.2168205. Epub 2011 Oct 14.
9
Semisupervised Learning via Axiomatic Fuzzy Set Theory and SVM.基于公理模糊集理论和 SVM 的半监督学习。
IEEE Trans Cybern. 2022 Jun;52(6):4661-4674. doi: 10.1109/TCYB.2020.3032707. Epub 2022 Jun 16.
10
Enhancing Graph-Based Semisupervised Learning via Knowledge-Aware Data Embedding.通过知识感知数据嵌入增强基于图的半监督学习
IEEE Trans Neural Netw Learn Syst. 2020 Nov;31(11):5014-5020. doi: 10.1109/TNNLS.2019.2955565. Epub 2020 Oct 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验