Suppr超能文献

一种用于具有物理约束的机器人基于图像视觉伺服的神经控制器。

A Neural Controller for Image-Based Visual Servoing of Manipulators With Physical Constraints.

作者信息

Zhang Yinyan, Li Shuai

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5419-5429. doi: 10.1109/TNNLS.2018.2802650. Epub 2018 Mar 2.

Abstract

Main issues in visual servoing of manipulators mainly include rapid convergence of feature errors to zero and the safety of joints regarding joint physical limits. To address the two issues, in this paper, an image-based visual servoing scheme is proposed for manipulators with an eye-in-hand configuration. Compared with existing schemes, the proposed one does not require performing pseudoinversion for the image Jacobian matrix or inversion for the Jacobian matrix associated with the forward kinematics of the manipulators. Theoretical analysis shows that the proposed scheme not only guarantees the asymptotic convergence of feature errors to zero but also the compliance with joint angle and velocity limits of the manipulators. Besides, simulation results based on a PUMA560 manipulator with a camera mounted on the end effector verify the theoretical conclusions and the efficacy of the proposed scheme.

摘要

机器人视觉伺服中的主要问题主要包括特征误差快速收敛到零以及关节在关节物理极限方面的安全性。为了解决这两个问题,本文针对具有手眼配置的机器人提出了一种基于图像的视觉伺服方案。与现有方案相比,该方案不需要对图像雅可比矩阵进行伪逆运算,也不需要对与机器人正向运动学相关的雅可比矩阵进行求逆运算。理论分析表明,该方案不仅保证了特征误差渐近收敛到零,而且保证了机器人关节角度和速度极限的合规性。此外,基于在末端执行器上安装摄像头的PUMA560机器人的仿真结果验证了理论结论和所提方案的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验