Liang Xinwu, Wang Hesheng, Liu Yun-Hui, You Bing, Liu Zhe, Jing Zhongliang, Chen Weidong
IEEE Trans Cybern. 2022 Oct;52(10):10895-10908. doi: 10.1109/TCYB.2021.3070598. Epub 2022 Sep 19.
We consider the uncalibrated vision-based control problem of robotic manipulators in this work. Though lots of approaches have been proposed to solve this problem, they usually require calibration (offline or online) of the camera parameters in the implementation, and the control performance may be largely affected by parameter estimation errors. In this work, we present new fully uncalibrated visual servoing approaches for position control of the 2DOFs planar manipulator with a fixed camera. In the proposed approaches, no camera calibration is required, and numerical optimization algorithms or adaptive laws for parameter estimation are not needed. One benefit of such features is that exponential convergence of the image position errors can be ensured regardless of the camera parameter uncertainties. Generally, existing uncalibrated approaches only can guarantee asymptotical convergence of the position errors. Moreover, different from most existing approaches which assume that the robot motion plane and the image plane are parallel, one of the proposed approaches allows the camera to be installed at a general pose. This also simplifies the controller implementation and improves the system design flexibility. Finally, simulation and experimental results are provided to illustrate the effectiveness of the presented fully uncalibrated visual servoing approaches.
在这项工作中,我们考虑机器人操纵器基于视觉的未校准控制问题。尽管已经提出了许多方法来解决这个问题,但它们在实现过程中通常需要(离线或在线)校准相机参数,并且控制性能可能会受到参数估计误差的很大影响。在这项工作中,我们提出了用于具有固定相机的二自由度平面操纵器位置控制的全新完全未校准视觉伺服方法。在所提出的方法中,不需要相机校准,也不需要用于参数估计的数值优化算法或自适应律。这些特性的一个好处是,无论相机参数的不确定性如何,都可以确保图像位置误差的指数收敛。一般来说,现有的未校准方法只能保证位置误差的渐近收敛。此外,与大多数现有方法假设机器人运动平面和图像平面平行不同,所提出的方法之一允许相机以一般姿态安装。这也简化了控制器的实现并提高了系统设计的灵活性。最后,提供了仿真和实验结果来说明所提出的完全未校准视觉伺服方法的有效性。