Suppr超能文献

在线性增长条件下的在线梯度下降算法的泛化能力。

On the Generalization Ability of Online Gradient Descent Algorithm Under the Quadratic Growth Condition.

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):5008-5019. doi: 10.1109/TNNLS.2017.2764960. Epub 2018 Jan 17.

Abstract

Online learning has been successfully applied in various machine learning problems. Conventional analysis of online learning achieves a sharp generalization bound with a strongly convex assumption. In this paper, we study the generalization ability of the classic online gradient descent algorithm under the quadratic growth condition (QGC), a strictly weaker condition than strong convexity. Under some mild assumptions, we prove that the excess risk converges no worse than $O(\log T/T)$ when the data are independently and identically distributed (i.i.d.). When the data are generated from a $\phi $ -mixing process, we achieve the excess risk bound $O(\log T /T+\phi (\tau))$ , where $\phi (\tau)$ is the mixing coefficient capturing the non-i.i.d. attribute. Our key technique is based on the combination of the QGC and the martingale concentrations. Our results indicate that the strong convexity is not necessary to achieve the sharp $O(\log {T}/T)$ convergence rate in online learning. We verify our theories on both synthetic and real-world data.

摘要

在线学习已成功应用于各种机器学习问题。传统的在线学习分析在强凸假设下达到了锐利的泛化界。在本文中,我们研究了经典在线梯度下降算法在二次增长条件(QGC)下的泛化能力,这是比强凸性严格弱的条件。在一些温和的假设下,我们证明了当数据独立同分布(iid)时,当数据由 $\phi $ -混合过程生成时,我们实现了 excess risk bound $O(\log T /T+\phi (\tau))$ ,其中 $\phi (\tau)$ 是捕获非iid 属性的混合系数。我们的关键技术基于 QGC 和鞅浓度的组合。我们的结果表明,强凸性不是在线学习中达到尖锐的 $O(\log {T}/T)$ 收敛速度所必需的。我们在合成和真实世界数据上验证了我们的理论。

相似文献

2
A fast kernel extreme learning machine based on conjugate gradient.基于共轭梯度的快速核极限学习机。
Network. 2018;29(1-4):70-80. doi: 10.1080/0954898X.2018.1562247. Epub 2019 Jan 27.
3
Piecewise convexity of artificial neural networks.人工神经网络的分段凸性。
Neural Netw. 2017 Oct;94:34-45. doi: 10.1016/j.neunet.2017.06.009. Epub 2017 Jul 3.
4
Dependent online kernel learning with constant number of random Fourier features.基于常数随机傅里叶特征的相依在线核学习。
IEEE Trans Neural Netw Learn Syst. 2015 Oct;26(10):2464-76. doi: 10.1109/TNNLS.2014.2387313. Epub 2015 Jan 21.
6

引用本文的文献

本文引用的文献

1
A Note on the Unification of Adaptive Online Learning.自适应在线学习的统一方法研究
IEEE Trans Neural Netw Learn Syst. 2017 May;28(5):1178-1191. doi: 10.1109/TNNLS.2016.2527053. Epub 2016 Feb 24.
2
Learning a Coupled Linearized Method in Online Setting.在线环境下学习耦合线性化方法。
IEEE Trans Neural Netw Learn Syst. 2017 Feb;28(2):438-450. doi: 10.1109/TNNLS.2016.2514413. Epub 2016 Jan 22.
3
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
4
Memristor-based multilayer neural networks with online gradient descent training.基于忆阻器的多层神经网络及其在线梯度下降训练。
IEEE Trans Neural Netw Learn Syst. 2015 Oct;26(10):2408-21. doi: 10.1109/TNNLS.2014.2383395. Epub 2015 Jan 14.
5
Deep learning in neural networks: an overview.神经网络中的深度学习:综述。
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验