Suppr超能文献

基于全卷积神经网络和改进三维条件随机场的左心耳分割。

Left Atrial Appendage Segmentation Using Fully Convolutional Neural Networks and Modified Three-Dimensional Conditional Random Fields.

出版信息

IEEE J Biomed Health Inform. 2018 Nov;22(6):1906-1916. doi: 10.1109/JBHI.2018.2794552. Epub 2018 Jan 17.

Abstract

Thrombosis has become a global disease threatening human health. The left atrial appendage (LAA) is a major source of thrombosis in patients with atrial fibrillation (AF). Positive correlation exists between LAA volume and AF risk. LAA morphology has been suggested to influence thromboembolic risk in AF patients and to help predict thromboembolic events in low-risk patient groups. Automatic segmentation of LAA can greatly help physicians diagnose AF. In consideration of the large anatomical variations of the LAA, we proposed a robust method for automatic LAA segmentation on computed tomographic angiography (CTA) data using fully convolutional neural networks with three-dimensional (3-D) conditional random fields (CRFs). After manual localization of ROI of LAA, we adopted the FCN in natural image segmentation and transferred their learned models by fine-tuning the networks to segment each 2-D LAA slice. Subsequently, we used a modified dense 3-D CRF that accounts for the 3-D spatial information and larger contextual information to refine the segmentations of all slices. Our method was evaluated on 150 sets of CTA data using five-fold cross validation. Compared with manual annotation, we obtained a mean dice overlap of and a mean volume overlap of with a computation time of less than 40 s per volume. Experimental results demonstrated the robustness of our method in dealing with large anatomical variations and computational efficiency for adoption in a daily clinical routine.).

摘要

血栓形成已成为威胁人类健康的全球性疾病。左心耳(LAA)是心房颤动(AF)患者血栓形成的主要来源。LAA 体积与 AF 风险呈正相关。LAA 形态学被认为会影响 AF 患者的血栓栓塞风险,并有助于预测低危患者群体的血栓栓塞事件。LAA 的自动分割可以极大地帮助医生诊断 AF。考虑到 LAA 的解剖学变化较大,我们提出了一种使用具有三维(3-D)条件随机场(CRF)的全卷积神经网络对 CT 血管造影(CTA)数据进行自动 LAA 分割的稳健方法。在手动定位 LAA 的 ROI 后,我们采用了自然图像分割中的 FCN,并通过微调网络将其学习的模型转移到分割每个 2-D LAA 切片。随后,我们使用了一种经过修改的密集 3-D CRF,该 CRF 考虑了 3-D 空间信息和更大的上下文信息,以细化所有切片的分割。我们的方法在使用五折交叉验证的 150 组 CTA 数据上进行了评估。与手动注释相比,我们获得了平均骰子重叠率和平均体积重叠率,计算时间为每个体积小于 40 秒。实验结果表明,我们的方法在处理大的解剖学变化方面具有稳健性,并且在日常临床常规中具有计算效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验