Suppr超能文献

利用3D残差UNet对心电图门控CT进行时变分割,自动定量左心房容积以进行心律分析。

Automatic quantification of left atrium volume for cardiac rhythm analysis leveraging 3D residual UNet for time-varying segmentation of ECG-gated CT.

作者信息

Buongiorno Rossana, Verdirame Ilaria, Dell'Agnello Francesca, Fanni Benigno Marco, Capellini Katia, Clemente Alberto, Positano Vincenzo, Berti Sergio, Celi Simona

机构信息

BioCardioLab, Bioengineering Unit, Fondazione Toscana G. Monasterio, Massa, 54100, Italy.

Department of Information Engineering, University of Pisa, via G. Caruso, Pisa, 56122, Italy.

出版信息

Comput Struct Biotechnol J. 2025 May 13;28:175-189. doi: 10.1016/j.csbj.2025.04.039. eCollection 2025.

Abstract

Atrial fibrillation (AF) is a heart condition widely recognized as a significant risk factor for stroke. Left atrial (LA) volume variation has been identified as a key predictor of AF, and several researchers have proposed deep learning models capable of quickly providing this measurement by processing computed tomography (CT) or magnetic resonance images. In clinical imaging, time-varying ECG-gated CT offers precise information about LA anatomy and function, which could help in developing personalized treatment plans for AF patients. Furthermore, advancements in time-varying dataset acquisition indicate the potential for expanding the role of CT in the management of AF patients through specialized processing techniques. However, automatic segmentation of the LA across all cardiac phases remains challenging due to significant variations in both anatomical structures and image signals throughout the cardiac cycle. To overcome these challenges, this study presents a comprehensive AI-based framework designed to segment the LA across the entire cardiac cycle and classify patients with AF. Specifically, our framework employs a customized Residual 3D-UNet model to segment the LA from time-varying ECG-gated CT scans and utilizes a One-Class Support Vector Machine (OCSVM) to distinguish patients in sinus rhythm (SR) from those with AF. A dataset of 93 time-varying ECG-gated CT scans was retrospectively collected: 60 patients were used for the segmentation task, while 33 patients were used for the classification task. The Residual 3D-UNet model demonstrated high accuracy, achieving a mean Dice score of 0.94, with consistent precision (94.45%) and recall (94.83%) across ten cardiac phases. The OCSVM achieved 78.7% accuracy with high specificity (86.3%), effectively minimizing the risk of misclassifying AF as SR, although sensitivity was lower at 70%, demonstrating the potential of automated segmentation and rhythm classification, providing a potential valuable tool for AF diagnosis.

摘要

心房颤动(AF)是一种被广泛认为是中风重要危险因素的心脏疾病。左心房(LA)容积变化已被确定为房颤的关键预测指标,一些研究人员提出了能够通过处理计算机断层扫描(CT)或磁共振图像快速提供该测量值的深度学习模型。在临床成像中,时变心电图门控CT可提供有关LA解剖结构和功能的精确信息,这有助于为房颤患者制定个性化治疗方案。此外,时变数据集采集方面的进展表明,通过专门的处理技术,CT在房颤患者管理中的作用有扩大的潜力。然而,由于整个心动周期中解剖结构和图像信号的显著变化,在所有心脏相位自动分割LA仍然具有挑战性。为了克服这些挑战,本研究提出了一个基于人工智能的综合框架,旨在对整个心动周期的LA进行分割并对房颤患者进行分类。具体而言,我们的框架采用定制的残差3D-UNet模型从时变心电图门控CT扫描中分割LA,并使用一类支持向量机(OCSVM)将窦性心律(SR)患者与房颤患者区分开来。回顾性收集了一个包含93次时变心电图门控CT扫描的数据集:60名患者用于分割任务,33名患者用于分类任务。残差3D-UNet模型表现出高准确性,平均Dice分数达到0.94,在十个心脏相位中精度(94.45%)和召回率(94.83%)一致。OCSVM的准确率达到78.7%,特异性高(86.3%),有效降低了将房颤误分类为SR的风险,尽管灵敏度较低,为70%,这证明了自动分割和心律分类的潜力,为房颤诊断提供了一个潜在的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfbd/12143801/44e4280f322f/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验