Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland.
PLoS Genet. 2018 Jul 11;14(7):e1007487. doi: 10.1371/journal.pgen.1007487. eCollection 2018 Jul.
Altered glucose and lipid metabolism fuel cystic growth in polycystic kidneys, but the cause of these perturbations is unclear. Renal cysts also associate with mutations in Bicaudal C1 (Bicc1) or in its self-polymerizing sterile alpha motif (SAM). Here, we found that Bicc1 maintains normoglycemia and the expression of the gluconeogenic enzymes FBP1 and PEPCK in kidneys. A proteomic screen revealed that Bicc1 interacts with the C-Terminal to Lis-Homology domain (CTLH) complex. Since the orthologous Gid complex in S. cerevisae targets FBP1 and PEPCK for degradation, we mapped the topology among CTLH subunits and found that SAM-mediated binding controls Bicc1 protein levels, whereas Bicc1 inhibited the accumulation of several CTLH subunits. Under the conditions analyzed, Bicc1 increased FBP1 protein levels independently of the CTLH complex. Besides linking Bicc1 to cell metabolism, our findings reveal new layers of complexity in the regulation of renal gluconeogenesis compared to lower eukaryotes.
葡萄糖和脂质代谢的改变为多囊肾中的囊性生长提供燃料,但这些紊乱的原因尚不清楚。肾囊肿也与双尾 C1(Bicc1)或其自身聚合的无菌α基序(SAM)的突变有关。在这里,我们发现 Bicc1 维持正常血糖和糖异生酶 FBP1 和 PEPCK 在肾脏中的表达。蛋白质组学筛选显示 Bicc1 与 C 端至 Lis-Homology 结构域(CTLH)复合物相互作用。由于酿酒酵母中的同源 Gid 复合物将 FBP1 和 PEPCK 靶向降解,我们绘制了 CTLH 亚基之间的拓扑结构,并发现 SAM 介导的结合控制 Bicc1 蛋白水平,而 Bicc1 抑制了几个 CTLH 亚基的积累。在分析的条件下,Bicc1 独立于 CTLH 复合物增加了 FBP1 蛋白水平。除了将 Bicc1 与细胞代谢联系起来之外,我们的发现揭示了与低等真核生物相比,肾脏糖异生调节的新复杂性。