Department of Geography and Geographic Information Science, University of Cincinnati, Cincinnati, OH, 45221, USA.
Health Geography and Disease Modeling Laboratory, University of Cincinnati, Cincinnati, USA.
Int J Health Geogr. 2018 Jul 11;17(1):27. doi: 10.1186/s12942-018-0146-8.
Large geographical variations in the intensity of the HIV epidemic in sub-Saharan Africa call for geographically targeted resource allocation where burdens are greatest. However, data available for mapping the geographic variability of HIV prevalence and detecting HIV 'hotspots' is scarce, and population-based surveillance data are not always available. Here, we evaluated the viability of using clinic-based HIV prevalence data to measure the spatial variability of HIV in South Africa and Tanzania.
Population-based and clinic-based HIV data from a small HIV hyper-endemic rural community in South Africa as well as for the country of Tanzania were used to map smoothed HIV prevalence using kernel interpolation techniques. Spatial variables were included in clinic-based models using co-kriging methods to assess whether cofactors improve clinic-based spatial HIV prevalence predictions. Clinic- and population-based smoothed prevalence maps were compared using partial rank correlation coefficients and residual local indicators of spatial autocorrelation.
Routinely-collected clinic-based data captured most of the geographical heterogeneity described by population-based data but failed to detect some pockets of high prevalence. Analyses indicated that clinic-based data could accurately predict the spatial location of so-called HIV 'hotspots' in > 50% of the high HIV burden areas.
Clinic-based data can be used to accurately map the broad spatial structure of HIV prevalence and to identify most of the areas where the burden of the infection is concentrated (HIV 'hotspots'). Where population-based data are not available, HIV data collected from health facilities may provide a second-best option to generate valid spatial prevalence estimates for geographical targeting and resource allocation.
撒哈拉以南非洲地区艾滋病毒流行的强度存在很大的地域差异,需要在负担最重的地区进行有针对性的地理资源分配。然而,用于绘制艾滋病毒流行率的地域可变性和检测艾滋病毒“热点”的可用数据稀缺,并且并非总是可以获得基于人群的监测数据。在这里,我们评估了使用基于诊所的艾滋病毒流行率数据来衡量南非和坦桑尼亚艾滋病毒空间变异性的可行性。
利用南非一个小型艾滋病毒高度流行的农村社区的基于人群和基于诊所的艾滋病毒数据,使用核插值技术绘制平滑的艾滋病毒流行率图。使用协同克里金方法在基于诊所的模型中包含空间变量,以评估协变量是否可以改善基于诊所的空间艾滋病毒流行率预测。使用部分秩相关系数和残差局部空间自相关指标比较基于诊所和基于人群的平滑流行率图。
常规收集的基于诊所的数据捕捉到了基于人群数据所描述的大部分地域异质性,但未能检测到一些高流行率的地区。分析表明,基于诊所的数据可以准确预测高艾滋病毒负担地区中所谓的艾滋病毒“热点”的空间位置。
基于诊所的数据可用于准确绘制艾滋病毒流行率的广泛空间结构,并确定感染负担集中的大部分地区(艾滋病毒“热点”)。在无法获得基于人群的数据的情况下,从卫生设施收集的艾滋病毒数据可能是生成用于地理定位和资源分配的有效空间流行率估计值的次优选择。