Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France.
Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany.
Plant Cell. 2018 Aug;30(8):1824-1847. doi: 10.1105/tpc.18.00361. Epub 2018 Jul 11.
Plants and algae must tightly coordinate photosynthetic electron transport and metabolic activities given that they often face fluctuating light and nutrient conditions. The exchange of metabolites and signaling molecules between organelles is thought to be central to this regulation but evidence for this is still fragmentary. Here, we show that knocking out the peroxisome-located () of results in dramatic alterations not only in peroxisomal fatty acid breakdown but also in chloroplast starch metabolism and photosynthesis. mutants accumulated 50% more storage lipid and 2-fold more starch than the wild type during nitrogen deprivation. In parallel, showed increased photosystem II yield and photosynthetic CO fixation. Metabolite analyses revealed a >60% reduction in malate, together with increased levels of NADPH and HO in Similar phenotypes were found upon high light exposure. Furthermore, based on the lack of starch accumulation in a knockout mutant of the HO-producing peroxisomal and on the effects of HO supplementation, we propose that peroxisome-derived HO acts as a regulator of chloroplast metabolism. We conclude that peroxisomal MDH2 helps photoautotrophs cope with nitrogen scarcity and high light by transmitting the redox state of the peroxisome to the chloroplast by means of malate shuttle- and HO-based redox signaling.
鉴于植物和藻类经常面临光和营养条件的波动,它们必须紧密协调光合作用电子传递和代谢活动。细胞器之间代谢物和信号分子的交换被认为是这种调节的核心,但这方面的证据仍然很零碎。在这里,我们表明,敲除定位于过氧化物酶体的 () 不仅会导致过氧化物酶体脂肪酸分解的剧烈改变,还会导致叶绿体淀粉代谢和光合作用的改变。在氮饥饿期间, 突变体积累的储存脂质比野生型多 50%,淀粉多 2 倍。与此平行的是, 表现出更高的光系统 II 产量和光合作用 CO2固定。代谢物分析显示,苹果酸减少了 >60%,同时 NADPH 和 HO 的水平增加。在高光暴露下也发现了类似的表型。此外,基于 HO 产生的过氧化物酶体 缺失突变体中没有淀粉积累,以及 HO 补充的影响,我们提出过氧化物酶体衍生的 HO 作为叶绿体代谢的调节剂。我们的结论是,过氧化物酶体 MDH2 通过苹果酸穿梭和基于 HO 的氧化还原信号将过氧化物体的氧化还原状态传递给叶绿体,从而帮助自养生物应对氮饥饿和高光。