Chaux Frédéric, Burlacot Adrien, Mekhalfi Malika, Auroy Pascaline, Blangy Stéphanie, Richaud Pierre, Peltier Gilles
CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, UMR 7265, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lez-Durance, F-13108 France.
CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, UMR 7265, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lez-Durance, F-13108 France
Plant Physiol. 2017 Jul;174(3):1825-1836. doi: 10.1104/pp.17.00421. Epub 2017 May 9.
During oxygenic photosynthesis, the reducing power generated by light energy conversion is mainly used to reduce carbon dioxide. In bacteria and archae, flavodiiron (Flv) proteins catalyze O or NO reduction, thus protecting cells against oxidative or nitrosative stress. These proteins are found in cyanobacteria, mosses, and microalgae, but have been lost in angiosperms. Here, we used chlorophyll fluorescence and oxygen exchange measurement using [O]-labeled O and a membrane inlet mass spectrometer to characterize insertion mutants devoid of both FlvB and FlvA proteins. We show that Flv proteins are involved in a photo-dependent electron flow to oxygen, which drives most of the photosynthetic electron flow during the induction of photosynthesis. As a consequence, the chlorophyll fluorescence patterns are strongly affected in mutants during a light transient, showing a lower PSII operating yield and a slower nonphotochemical quenching induction. Photoautotrophic growth of mutants was indistinguishable from the wild type under constant light, but severely impaired under fluctuating light due to PSI photo damage. Remarkably, net photosynthesis of mutants was higher than in the wild type during the initial hour of a fluctuating light regime, but this advantage vanished under long-term exposure, and turned into PSI photo damage, thus explaining the marked growth retardation observed in these conditions. We conclude that the Flv participates in a Mehler-like reduction of O, which drives a large part of the photosynthetic electron flow during a light transient and is thus critical for growth under fluctuating light regimes.
在有氧光合作用过程中,光能转换产生的还原力主要用于还原二氧化碳。在细菌和古菌中,黄素二铁(Flv)蛋白催化氧气或一氧化氮的还原,从而保护细胞免受氧化或亚硝化应激。这些蛋白存在于蓝细菌、苔藓和微藻中,但在被子植物中已丢失。在这里,我们使用叶绿素荧光和利用[O]标记的氧气及膜进样质谱仪进行的氧气交换测量,来表征缺乏FlvB和FlvA蛋白的插入突变体。我们表明,Flv蛋白参与了依赖光的向氧电子流,这在光合作用诱导过程中驱动了大部分光合电子流。因此,在光瞬变期间,突变体中的叶绿素荧光模式受到强烈影响,表现出较低的PSII运行效率和较慢的非光化学猝灭诱导。在持续光照下,突变体的光合自养生长与野生型无差异,但在波动光照下由于PSI光损伤而严重受损。值得注意的是,在波动光照条件下的最初一小时内,突变体的净光合作用高于野生型,但这种优势在长期暴露下消失,并转变为PSI光损伤,从而解释了在这些条件下观察到的明显生长迟缓。我们得出结论,Flv参与了类似梅勒反应的氧气还原过程,该过程在光瞬变期间驱动了大部分光合电子流,因此对于波动光照条件下的生长至关重要。