Gibson Mark S, Domingues Neuza, Vieira Otilia V
Lysosomes in Chronic Human Pathologies and Infection, Faculdade de Ciências Médicas, Centro de Estudos de Doenças Crónicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.
Front Physiol. 2018 Jun 26;9:654. doi: 10.3389/fphys.2018.00654. eCollection 2018.
Atherosclerosis is a chronic inflammatory disease and a leading cause of human mortality. The lesional microenvironment contains a complex accumulation of variably oxidized lipids and cytokines. Infiltrating monocytes become polarized in response to these stimuli, resulting in a broad spectrum of macrophage phenotypes. The extent of lipid loading in macrophages influences their phenotype and consequently their inflammatory status. In response to excess atherogenic ligands, many normal cell processes become aberrant following a loss of homeostasis. This can have a direct impact upon the inflammatory response, and conversely inflammation can lead to cell dysfunction. Clear evidence for this exists in the lysosomes, endoplasmic reticulum and mitochondria of atherosclerotic macrophages, the principal lesional cell type. Furthermore, several intrinsic cell processes become dysregulated under lipidotic conditions. Therapeutic strategies aimed at restoring cell function under disease conditions are an ongoing coveted aim. Macrophages play a central role in promoting lesional inflammation, with plaque progression and stability being directly proportional to macrophage abundance. Understanding how mixtures or individual lipid species regulate macrophage biology is therefore a major area of atherosclerosis research. In this review, we will discuss how the myriad of lipid and lipoprotein classes and products used to model atherogenic, proinflammatory immune responses has facilitated a greater understanding of some of the intricacies of chronic inflammation and cell function. Despite this, lipid oxidation produces a complex mixture of products and with no single or standard method of derivatization, there exists some variation in the reported effects of certain oxidized lipids. Likewise, differences in the methods used to generate macrophages may also lead to variable responses when apparently identical lipid ligands are used. Consequently, the complexity of reported macrophage phenotypes has implications for our understanding of the metabolic pathways, processes and shifts underpinning their activation and inflammatory status. Using oxidized low density lipoproteins and its oxidized cholesteryl esters and phospholipid constituents to stimulate macrophage has been hugely valuable, however there is now an argument that only working with low complexity lipid species can deliver the most useful information to guide therapies aimed at controlling atherosclerosis and cardiovascular complications.
动脉粥样硬化是一种慢性炎症性疾病,也是人类死亡的主要原因。病变微环境包含多种氧化程度不同的脂质和细胞因子的复杂积聚。浸润的单核细胞会对这些刺激产生极化反应,从而产生广泛的巨噬细胞表型。巨噬细胞中的脂质负载程度会影响其表型,进而影响其炎症状态。在过量致动脉粥样硬化配体的作用下,许多正常细胞过程在稳态丧失后会变得异常。这可能会直接影响炎症反应,反之,炎症也会导致细胞功能障碍。在动脉粥样硬化巨噬细胞(主要的病变细胞类型)的溶酶体、内质网和线粒体中存在明确的证据支持这一点。此外,在脂质蓄积条件下,一些内在细胞过程会失调。旨在恢复疾病状态下细胞功能的治疗策略一直是人们梦寐以求的目标。巨噬细胞在促进病变炎症方面起着核心作用,斑块的进展和稳定性与巨噬细胞的丰度直接相关。因此,了解混合脂质或单个脂质种类如何调节巨噬细胞生物学是动脉粥样硬化研究的一个主要领域。在本综述中,我们将讨论用于模拟致动脉粥样硬化、促炎免疫反应的无数脂质和脂蛋白类别及产物如何有助于更深入地理解慢性炎症和细胞功能的一些复杂性。尽管如此,脂质氧化会产生复杂的产物混合物,并且由于没有单一或标准的衍生化方法,某些氧化脂质的报道效应存在一些差异。同样,用于生成巨噬细胞的方法差异也可能导致在使用明显相同的脂质配体时产生不同的反应。因此,所报道的巨噬细胞表型的复杂性对我们理解其激活和炎症状态背后的代谢途径、过程和变化具有影响。使用氧化型低密度脂蛋白及其氧化胆固醇酯和磷脂成分来刺激巨噬细胞非常有价值,然而现在有一种观点认为,只有使用低复杂性脂质种类才能提供最有用的信息,以指导旨在控制动脉粥样硬化和心血管并发症的治疗。