Suppr超能文献

改善晚期帕金森病的共同决策:一项混合方法可行性研究方案

Improving shared decision-making in advanced Parkinson's disease: protocol of a mixed methods feasibility study.

作者信息

Nijhuis Frouke A P, Elwyn Glyn, Bloem Bastiaan R, Post Bart, Faber Marjan J

机构信息

1Department of Neurology, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands.

2Department of Neurology, Radboud Institute for Health Sciences, Radboud University Medical Center, Neurology 935, PO Box 9101, 6500 HB Nijmegen, the Netherlands.

出版信息

Pilot Feasibility Stud. 2018 Jul 4;4:94. doi: 10.1186/s40814-018-0286-4. eCollection 2018.

Abstract

BACKGROUND

In advanced stages of Parkinson's disease (PD), patients and neurologists regularly face complex treatment decisions. Shared decision-making (SDM) can support the process where evidence, the clinician's expertise and the patient's preferences jointly contribute to reach an optimal decision. Here, we describe the rationale of our feasibility study protocol.The aim of the study is to test the feasibility of the SDM intervention by (1) analysing the acceptability of the intervention by users (i.e. professionals and patients), (2) assessing the level of implementation, (3) testing efficacy on a small scale and (4) evaluating the study procedures.

METHODS

Using an uncontrolled before-after mixed methods design, patients in the pre-intervention group will receive information and decisional support as usual. Patients in the post-intervention group will receive the SDM intervention, consisting of an Option Grid™ patient decision aid and a website with supplementary information plus a value clarification tool for both patients and professionals. An Option Grid is a one-page, evidence-based summary of available options, listing the frequently asked questions that patients consider when making treatment decisions. A value clarification tool helps patients identify which option he/she prefers based on attributes in the treatment decision context. Neurologists and PD nurse specialists will receive a 1-h instruction on SDM and how to use the SDM intervention.Through purposive sampling, neurologists and PD nurse specialists will be recruited from both specialised neurology clinics and community-based hospitals. Included professionals will invite consecutive patients who are eligible for the advanced therapies.Data will be collected using questionnaires, interviews and audio observations of the consultations and by tracking users' logging behaviour of the website. Data will be analysed using a mixed methods design.

DISCUSSION

The mixed methods design will create a deeper understanding of how the SDM intervention affects the interactions between professionals (a neurologist and/or a PD nurse specialist) and the patient, when an advanced treatment is chosen. The results of the study will inform the design of an RCT to test the effectiveness of the SDM intervention.

TRIAL REGISTRATION

NTR6649, retrospectively registered 28 August 2017.

摘要

背景

在帕金森病(PD)的晚期,患者和神经科医生经常面临复杂的治疗决策。共同决策(SDM)有助于在证据、临床医生的专业知识和患者的偏好共同作用以达成最佳决策的过程。在此,我们描述可行性研究方案的基本原理。本研究的目的是通过以下方式测试SDM干预的可行性:(1)分析使用者(即专业人员和患者)对干预的接受程度;(2)评估实施水平;(3)小规模测试疗效;(4)评估研究程序。

方法

采用非对照前后混合方法设计,干预前组的患者将照常接受信息和决策支持。干预后组的患者将接受SDM干预,包括一个“选项网格”(Option Grid™)患者决策辅助工具、一个提供补充信息的网站以及一个供患者和专业人员使用的价值澄清工具。“选项网格”是一页基于证据的可用选项总结,列出患者在做出治疗决策时考虑的常见问题。价值澄清工具帮助患者根据治疗决策背景中的属性确定自己更喜欢哪种选项。神经科医生和帕金森病专科护士将接受关于SDM以及如何使用SDM干预的1小时培训。通过目的抽样,从专业神经科诊所和社区医院招募神经科医生和帕金森病专科护士。纳入的专业人员将邀请符合高级治疗条件的连续患者参与。将通过问卷调查、访谈、会诊的音频观察以及跟踪网站用户的登录行为来收集数据。将采用混合方法设计对数据进行分析。

讨论

混合方法设计将更深入地了解在选择高级治疗时,SDM干预如何影响专业人员(神经科医生和/或帕金森病专科护士)与患者之间的互动。研究结果将为测试SDM干预效果的随机对照试验(RCT)设计提供信息。

试验注册

NTR6649,于2017年8月28日进行追溯注册。

相似文献

引用本文的文献

3
Shared decision-making in patients with multiple sclerosis.多发性硬化症患者的共同决策。
Front Neurol. 2022 Nov 11;13:1063904. doi: 10.3389/fneur.2022.1063904. eCollection 2022.

本文引用的文献

9
Clarifying values: an updated review.澄清价值观:最新综述。
BMC Med Inform Decis Mak. 2013;13 Suppl 2(Suppl 2):S8. doi: 10.1186/1472-6947-13-S2-S8. Epub 2013 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验