Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Mol Ecol. 2018 Jul;27(14):2909-2912. doi: 10.1111/mec.14733.
Aquatic biofilms are hotspots of biogeochemical activity due to concentrated microbial biomass (Battin, Kaplan, Newbold, & Hansen, ). However, biofilms are often considered a single entity when their role in biogeochemical transformations is assessed, even though these biofilms harbour functionally diverse microbial communities (Battin, Besemer, Bengtsson, Romani, & Packmann, ; Veach, Stegen, Brown, Dodds, & Jumpponen, ). Often overlooked are the biotic interactions among biofilm components that can affect ecosystem-scale processes such as primary production and nutrient cycling. These interactions are likely to be especially important under resource limitation. Light is a primary resource mediating algal photosynthesis and both phototrophic and heterotrophic production due to bacterial reliance on C-rich algal exudates (Cole, ). However, current understanding of function-structure linkages in streams has yet to unravel the relative degree of these microbial feedbacks under resource availability gradients. In this issue of Molecular Ecology, Bengtsson, Wagner, Schwab, Urich, and Battin () studied stream biofilm responses to light availability to understand its impact across three domains of life. By integrating biogeochemical rate estimation and metatranscriptomics within a microcosm experiment, they were able to link primary production and nutrient uptake rates to algal and bacterial metabolic processes and specify what taxa contributed to gene expression. Under low light, diatoms and cyanobacteria upregulated photosynthetic machinery and diatom-specific chloroplast rRNA suggesting heightened transcriptional activity under light limitation to maintain phototrophic energy demands. Under high light, heterotrophic bacteria upregulated mRNAs related to phosphorous (P) metabolism while biofilm P uptake increased indicating high bacterial-specific P demand when algal biomass was high. Together, these results indicate that biogeochemical function is mediated by complex microbial interactions across trophic levels.
水生生物膜是生物地球化学活性的热点区域,因为其微生物生物量集中(Battin、Kaplan、Newbold 和 Hansen,)。然而,当评估生物膜在生物地球化学转化中的作用时,通常将其视为单一实体,尽管这些生物膜中栖息着功能多样的微生物群落(Battin、Besemer、Bengtsson、Romani 和 Packmann,;Veach、Stegen、Brown、Dodds 和 Jumpponen,)。生物膜成分之间的生物相互作用常常被忽视,这些相互作用会影响到生态系统尺度的过程,如初级生产和养分循环。在资源有限的情况下,这些相互作用可能尤为重要。光作为一种主要资源,通过细菌对富碳藻类分泌物的依赖,调节藻类光合作用和光养和异养生产(Cole,)。然而,目前对于溪流中功能结构联系的理解尚未揭示在资源可用性梯度下这些微生物反馈的相对程度。在本期的《分子生态学》中,Bengtsson、Wagner、Schwab、Urich 和 Battin()研究了溪流生物膜对光可用性的反应,以了解其在生命的三个领域中的影响。通过在微宇宙实验中整合生物地球化学速率估计和宏转录组学,他们能够将初级生产和养分吸收速率与藻类和细菌代谢过程联系起来,并确定哪些分类群对基因表达有贡献。在低光照下,硅藻和蓝藻上调了光合作用机制和硅藻特有的叶绿体 rRNA,表明在光限制下维持光养能需求的转录活性增强。在高光下,异养细菌上调了与磷(P)代谢相关的 mRNA,而生物膜 P 吸收增加表明当藻类生物量高时,细菌对 P 的需求很高。总的来说,这些结果表明,生物地球化学功能是由跨营养级的复杂微生物相互作用介导的。