Suppr超能文献

应用主成分分析对阿拉伯马群体的马属动物代谢综合征表型进行定量评分。

Use of principle component analysis to quantitatively score the equine metabolic syndrome phenotype in an Arabian horse population.

机构信息

Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America.

Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America.

出版信息

PLoS One. 2018 Jul 12;13(7):e0200583. doi: 10.1371/journal.pone.0200583. eCollection 2018.

Abstract

Equine metabolic syndrome (EMS), like human metabolic syndrome, comprises a collection of clinical signs related to obesity, insulin dysregulation and susceptibility to secondary inflammatory disease. Although the secondary conditions resulting from EMS can be life-threatening, diagnosis is not straightforward and often complicated by the presence of other concurrent conditions like pituitary pars intermedia dysfunction (PPID). In order to better characterize EMS, we sought to describe the variation within, and correlations between, typical physical and endocrine parameters for EMS. Utilizing an unsupervised statistical approach, we evaluated a population of Arabian horses using a physical examination including body measurements, as well as blood plasma insulin, leptin, ACTH, glucose, and lipid values. We investigated the relationships among these variables using principle component analysis (PCA), hierarchical clustering, and linear regression. Owner-assigned assessments of body condition were one full score (on a nine-point scale) lower than scores assigned by researchers, indicating differing perception of healthy equine body weight. Rotated PCA defined two factor scores explaining a total of 46.3% of variation within the dataset. Hierarchical clustering using these two factors revealed three groups corresponding well to traditional diagnostic categories of "Healthy", "PPID-suspect", and "EMS-suspect" based on the characteristics of each group. Proxies estimating up to 93.4% of the composite "EMS-suspect" and "PPID-suspect" scores were created using a reduced set of commonly used diagnostic variables, to facilitate application of these quantitative scores to horses of the Arabian breed in the field. Use of breed-specific, comprehensive physical and endocrinological variables combined in a single quantitative score may improve detection of horses at-risk for developing EMS, particularly in those lacking severe clinical signs. Quantification of EMS without the use of predetermined reference ranges provides an advantageous approach for future studies utilizing genomic or metabolomics approaches to improve understanding of the etiology behind this troubling condition.

摘要

马属代谢综合征(EMS)与人类代谢综合征一样,由与肥胖、胰岛素失调和易患继发性炎症性疾病相关的一系列临床体征组成。尽管 EMS 引起的继发性疾病可能危及生命,但诊断并不简单,通常因同时存在其他疾病(如垂体中间叶功能减退症(PPID))而变得复杂。为了更好地描述 EMS,我们试图描述 EMS 的典型体格和内分泌参数的变异性及其之间的相关性。我们利用无监督的统计方法,对一组阿拉伯马进行了评估,包括体格检查、血浆胰岛素、瘦素、ACTH、血糖和血脂值。我们使用主成分分析(PCA)、层次聚类和线性回归来研究这些变量之间的关系。所有者对身体状况的评估比研究人员的评分低一个完整的分数(在九点量表上),这表明对健康马体重的感知不同。旋转 PCA 定义了两个因子得分,共解释了数据集内总变异的 46.3%。使用这两个因子的层次聚类揭示了三个与传统诊断类别“健康”、“PPID 疑似”和“EMS 疑似”相对应的组,这三个组与每个组的特征非常吻合。使用常用诊断变量的简化集合创建了两个因子得分的代理,这些代理可用于估计高达 93.4%的复合“EMS 疑似”和“PPID 疑似”得分,以方便将这些定量得分应用于阿拉伯马品种的现场。使用单一的定量评分,结合特定品种的全面体格和内分泌变量,可以提高对易患 EMS 的马的检测能力,尤其是在那些缺乏严重临床症状的马中。在不使用预定参考范围的情况下对 EMS 进行量化,可以为利用基因组或代谢组学方法来改善对这种令人困扰的疾病背后病因的理解的未来研究提供有利的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd5/6042766/78bc2e0f269e/pone.0200583.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验