Suppr超能文献

端粒前沉默元件诱导的染色质环形成抑制. 中的基因。

Chromatin Loop Formation Induced by a Subtelomeric Protosilencer Represses Genes in .

机构信息

División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí 78216, Mexico.

Departamento Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-Unidad Irapuato), C.P. 36824 Irapuato, Gto, México.

出版信息

Genetics. 2018 Sep;210(1):113-128. doi: 10.1534/genetics.118.301202. Epub 2018 Jul 12.

Abstract

Adherence, an important virulence factor, is mediated by the (Epithelial Adhesin) genes in the opportunistic pathogen Expression of adhesin-encoding genes requires tight regulation to respond to harsh environmental conditions within the host. The majority of genes are localized in subtelomeric regions regulated by subtelomeric silencing, which depends mainly on Rap1 and the Sir proteins. adhesion to epithelial cells is primarily mediated by Epa1. forms a cluster with and in the right telomere of chromosome E (E). This telomere contains a -acting regulatory element, the protosilencer Sil2126 between and the telomere. Interestingly, Sil2126 is only active in the context of its native telomere. Replacement of the intergenic regions between genes in E revealed that -acting elements between and are required for Sil2126 activity when placed 32 kb away from the telomere (Sil@-32kb). Sil2126 contains several putative binding sites for Rap1 and Abf1, and its activity depends on these proteins. Indeed, Sil2126 binds Rap1 and Abf1 at its native position and also when inserted at -32 kb, a silencing-free environment in the parental strain. In addition, we found that Sil@-32kb and Sil2126 at its native position can physically interact with the intergenic regions between and respectively, by chromosome conformation capture assays. We speculate that Rap1 and Abf1 bound to Sil2126 can recruit the Silent Information Regulator complex, and together mediate silencing in this region, probably through the formation of a chromatin loop.

摘要

黏附性是一种重要的毒力因子,由机会性病原体中的 (上皮黏附素)基因介导。黏附素编码基因的表达需要严格的调控,以响应宿主内恶劣的环境条件。大多数 基因位于端粒下区域,由端粒沉默调控,这主要依赖于 Rap1 和 Sir 蛋白。对上皮细胞的黏附主要由 Epa1 介导。在染色体 E(E)的右端粒处, 与 和 形成一个簇。这个端粒包含一个 - 作用的调控元件,即位于 和端粒之间的原沉默子 Sil2126。有趣的是,Sil2126 仅在其天然端粒的背景下才具有活性。在 E 中 基因之间的基因间区的替换表明,当放置在远离端粒 32kb 处时,- 作用元件在 和 之间对于 Sil2126 活性是必需的(Sil@-32kb)。Sil2126 包含几个推定的 Rap1 和 Abf1 结合位点,其活性依赖于这些蛋白。事实上,Sil2126 在其天然位置结合 Rap1 和 Abf1,并且当插入到 -32kb 时,在亲本菌株中是一个无沉默的环境。此外,我们发现 Sil@-32kb 和 Sil2126 在其天然位置可以通过染色体构象捕获测定分别与 和 之间的基因间区物理相互作用。我们推测,结合到 Sil2126 上的 Rap1 和 Abf1 可以募集沉默信息调节复合物,并共同介导该区域的沉默,可能通过形成染色质环。

相似文献

1
Chromatin Loop Formation Induced by a Subtelomeric Protosilencer Represses Genes in .
Genetics. 2018 Sep;210(1):113-128. doi: 10.1534/genetics.118.301202. Epub 2018 Jul 12.
3
A protosilencer of subtelomeric gene expression in Candida glabrata with unique properties.
Genetics. 2012 Jan;190(1):101-11. doi: 10.1534/genetics.111.135251. Epub 2011 Nov 2.
4
A novel downstream regulatory element cooperates with the silencing machinery to repress EPA1 expression in Candida glabrata.
Genetics. 2012 Apr;190(4):1285-97. doi: 10.1534/genetics.111.138099. Epub 2012 Jan 10.
5
yKu70/yKu80 and Rif1 regulate silencing differentially at telomeres in Candida glabrata.
Eukaryot Cell. 2008 Dec;7(12):2168-78. doi: 10.1128/EC.00228-08. Epub 2008 Oct 3.
6
The EPA2 adhesin encoding gene is responsive to oxidative stress in the opportunistic fungal pathogen Candida glabrata.
Curr Genet. 2015 Nov;61(4):529-44. doi: 10.1007/s00294-015-0473-2. Epub 2015 Jan 14.
8
Molecular characterization of the silencing complex SIR in Candida glabrata hyperadherent clinical isolates.
Fungal Genet Biol. 2018 Sep;118:21-31. doi: 10.1016/j.fgb.2018.05.005. Epub 2018 May 29.
9
Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata.
Mol Microbiol. 2005 Feb;55(4):1246-58. doi: 10.1111/j.1365-2958.2004.04465.x.

引用本文的文献

3
Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination.
Pharmaceutics. 2021 Sep 22;13(10):1529. doi: 10.3390/pharmaceutics13101529.
4
Telomeric and Sub-Telomeric Structure and Implications in Fungal Opportunistic Pathogens.
Microorganisms. 2021 Jun 29;9(7):1405. doi: 10.3390/microorganisms9071405.
5
Chromatin architecture and virulence-related gene expression in eukaryotic microbial pathogens.
Curr Genet. 2019 Apr;65(2):435-443. doi: 10.1007/s00294-018-0903-z. Epub 2018 Nov 15.

本文引用的文献

2
Organization and function of the 3D genome.
Nat Rev Genet. 2016 Oct 14;17(11):661-678. doi: 10.1038/nrg.2016.112.
4
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae.
Genetics. 2016 Aug;203(4):1563-99. doi: 10.1534/genetics.112.145243.
5
JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.
Nucleic Acids Res. 2016 Jan 4;44(D1):D110-5. doi: 10.1093/nar/gkv1176. Epub 2015 Nov 3.
6
Randomized ligation control for chromosome conformation capture.
Cold Spring Harb Protoc. 2015 Jun 1;2015(6):587-92. doi: 10.1101/pdb.prot085183.
7
Chromosome Conformation Capture (3C) in Budding Yeast.
Cold Spring Harb Protoc. 2015 Jun 1;2015(6):580-6. doi: 10.1101/pdb.prot085175.
8
The Chromatin and Transcriptional Landscape of Native Saccharomyces cerevisiae Telomeres and Subtelomeric Domains.
Genetics. 2015 Jun;200(2):505-21. doi: 10.1534/genetics.115.175711. Epub 2015 Mar 30.
9
The molecular topography of silenced chromatin in Saccharomyces cerevisiae.
Genes Dev. 2014 Feb 1;28(3):245-58. doi: 10.1101/gad.230532.113.
10
SIR proteins and the assembly of silent chromatin in budding yeast.
Annu Rev Genet. 2013;47:275-306. doi: 10.1146/annurev-genet-021313-173730. Epub 2013 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验