Suppr超能文献

一种新型下游调控元件与沉默机制协同作用,抑制光滑念珠菌中 EPA1 的表达。

A novel downstream regulatory element cooperates with the silencing machinery to repress EPA1 expression in Candida glabrata.

机构信息

IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, San Luis Potosí, 78216, México.

出版信息

Genetics. 2012 Apr;190(4):1285-97. doi: 10.1534/genetics.111.138099. Epub 2012 Jan 10.

Abstract

Candida glabrata, an opportunistic fungal pathogen, adheres to mammalian epithelial cells; adherence is mediated primarily by the Epa1 adhesin. EPA1 is a member of a large gene family of ≈ 23 paralogues, which encode putative adhesins. In this study, we address how EPA1 transcription is regulated. Our data show that EPA1 expression is subject to two distinct negative regulatory mechanisms. EPA1 transcription is repressed by subtelomeric silencing: the Sir complex (Sir2-Sir4), Rap1, Rif1, yKu70, and yKu80 are required for full repression. Activation of EPA1 occurs immediately after dilution of stationary phase (SP) cells into fresh media; however, transcription is rapidly repressed again, limiting expression to lag phase, just as the cells exit stationary phase. This repression following lag phase requires a cis-acting regulatory negative element (NE) located in the EPA1 3'-intergenic region and is independent of telomere proximity. Bioinformatic analysis shows that there are 10 copies of the NE-like sequence in the C. glabrata genome associated with other EPA genes as well as non-EPA genes.

摘要

光滑念珠菌,一种机会性真菌病原体,黏附于哺乳动物上皮细胞;这种黏附主要是由 Epa1 黏附素介导的。Epa1 是一个约 23 个基因家族的成员,这些基因家族编码假定的黏附素。在这项研究中,我们研究了 EPA1 转录是如何被调控的。我们的数据表明,EPA1 的表达受到两种不同的负调控机制的调控。EPA1 的转录受到端粒沉默的抑制:Sir 复合物(Sir2-Sir4)、Rap1、Rif1、yKu70 和 yKu80 是完全抑制所必需的。在将静止期(SP)细胞稀释到新鲜培养基中后,EPA1 的激活立即发生;然而,转录又迅速被抑制,限制表达仅在迟滞期,就像细胞退出静止期一样。迟滞期后这种抑制需要位于 EPA1 3'基因间区的顺式作用负调控元件(NE),并且不依赖于端粒接近。生物信息学分析表明,在光滑念珠菌基因组中有 10 个与其他 EPA 基因以及非 EPA 基因相关的 NE 样序列的拷贝。

相似文献

1
A novel downstream regulatory element cooperates with the silencing machinery to repress EPA1 expression in Candida glabrata.
Genetics. 2012 Apr;190(4):1285-97. doi: 10.1534/genetics.111.138099. Epub 2012 Jan 10.
3
Chromatin Loop Formation Induced by a Subtelomeric Protosilencer Represses Genes in .
Genetics. 2018 Sep;210(1):113-128. doi: 10.1534/genetics.118.301202. Epub 2018 Jul 12.
4
yKu70/yKu80 and Rif1 regulate silencing differentially at telomeres in Candida glabrata.
Eukaryot Cell. 2008 Dec;7(12):2168-78. doi: 10.1128/EC.00228-08. Epub 2008 Oct 3.
6
A protosilencer of subtelomeric gene expression in Candida glabrata with unique properties.
Genetics. 2012 Jan;190(1):101-11. doi: 10.1534/genetics.111.135251. Epub 2011 Nov 2.
7
Sir3 Polymorphisms in Candida glabrata clinical isolates.
Mycopathologia. 2013 Apr;175(3-4):207-19. doi: 10.1007/s11046-013-9627-2. Epub 2013 Feb 8.
8
Molecular characterization of the silencing complex SIR in Candida glabrata hyperadherent clinical isolates.
Fungal Genet Biol. 2018 Sep;118:21-31. doi: 10.1016/j.fgb.2018.05.005. Epub 2018 May 29.
9
Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata.
Mol Microbiol. 2005 Feb;55(4):1246-58. doi: 10.1111/j.1365-2958.2004.04465.x.
10
Regulatory role of Mss11 in virulence: adhesion and biofilm formation.
Front Cell Infect Microbiol. 2024 Jan 4;13:1321094. doi: 10.3389/fcimb.2023.1321094. eCollection 2023.

引用本文的文献

3
Regulatory Roles of Histone Modifications in Filamentous Fungal Pathogens.
J Fungi (Basel). 2022 May 25;8(6):565. doi: 10.3390/jof8060565.
4
Functional variability in adhesion and flocculation of yeast megasatellite genes.
Genetics. 2022 May 5;221(1). doi: 10.1093/genetics/iyac042.
6
Highly specific and rapid molecular detection of Candida glabrata in clinical samples.
Braz J Microbiol. 2021 Dec;52(4):1733-1744. doi: 10.1007/s42770-021-00584-2. Epub 2021 Jul 31.
7
Telomeric and Sub-Telomeric Structure and Implications in Fungal Opportunistic Pathogens.
Microorganisms. 2021 Jun 29;9(7):1405. doi: 10.3390/microorganisms9071405.
9
Chromatin architecture and virulence-related gene expression in eukaryotic microbial pathogens.
Curr Genet. 2019 Apr;65(2):435-443. doi: 10.1007/s00294-018-0903-z. Epub 2018 Nov 15.
10
Chromatin Loop Formation Induced by a Subtelomeric Protosilencer Represses Genes in .
Genetics. 2018 Sep;210(1):113-128. doi: 10.1534/genetics.118.301202. Epub 2018 Jul 12.

本文引用的文献

1
A common telomeric gene silencing assay is affected by nucleotide metabolism.
Mol Cell. 2011 Apr 8;42(1):127-36. doi: 10.1016/j.molcel.2011.03.007.
2
From Saccharomyces cerevisiae to Candida glabratain a few easy steps: important adaptations for an opportunistic pathogen.
FEMS Microbiol Lett. 2011 Jan;314(1):1-9. doi: 10.1111/j.1574-6968.2010.02102.x. Epub 2010 Sep 16.
3
Epidemiology of invasive mycoses in North America.
Crit Rev Microbiol. 2010;36(1):1-53. doi: 10.3109/10408410903241444.
4
Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata.
Mem Inst Oswaldo Cruz. 2009 Jul;104(4):649-54. doi: 10.1590/s0074-02762009000400020.
5
Expression of Candida glabrata adhesins after exposure to chemical preservatives.
J Infect Dis. 2009 Jun 15;199(12):1891-8. doi: 10.1086/599120.
6
Deletion of WNK1 first intron results in misregulation of both isoforms in renal and extrarenal tissues.
Hypertension. 2008 Dec;52(6):1149-54. doi: 10.1161/HYPERTENSIONAHA.108.120899. Epub 2008 Oct 27.
7
yKu70/yKu80 and Rif1 regulate silencing differentially at telomeres in Candida glabrata.
Eukaryot Cell. 2008 Dec;7(12):2168-78. doi: 10.1128/EC.00228-08. Epub 2008 Oct 3.
8
The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins.
Eukaryot Cell. 2008 Nov;7(11):1951-64. doi: 10.1128/EC.00284-08. Epub 2008 Sep 19.
9
Glycan microarray analysis of Candida glabrata adhesin ligand specificity.
Mol Microbiol. 2008 May;68(3):547-59. doi: 10.1111/j.1365-2958.2008.06184.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验