Suppr超能文献

HeartLogic 多传感器算法可识别心力衰竭事件风险显著增加期间的患者:来自 MultiSENSE 研究的结果。

HeartLogic Multisensor Algorithm Identifies Patients During Periods of Significantly Increased Risk of Heart Failure Events: Results From the MultiSENSE Study.

机构信息

Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Clydebank, United Kingdom (R.S.G.).

Massachusetts General Hospital, Boston (J.P.S.).

出版信息

Circ Heart Fail. 2018 Jul;11(7):e004669. doi: 10.1161/CIRCHEARTFAILURE.117.004669.

Abstract

BACKGROUND

Care of heart failure (HF) patients results in a high burden on healthcare resources, and estimating prognosis is becoming increasingly important to triage resources wisely. Natriuretic peptides are recommended prognosticators in chronic HF. Our objective was to evaluate whether a multisensor HF index and alert algorithm (HeartLogic) replaces or augments current HF risk stratification.

METHODS AND RESULTS

MultiSENSE (Multisensor Chronic Evaluation in Ambulatory Heart Failure Patients) enrolled 900 patients with cardiac resynchronization therapy defibrillators enabled for collection of heart sounds, respiration, thoracic impedance, heart rate, and activity data. The HeartLogic algorithm automatically calculated a daily HF index and identified periods IN or OUT of an active alert state relative to a configurable threshold. Patients experienced 192 independently adjudicated HF events (average rate, 0.20/patient-year [pt-yr]) during 1 year of follow-up. HF event rates while IN alert was 10-fold higher than OUT of alert (0.80 versus 0.08 events/pt-yr). Combined with NT-proBNP (N-terminal pro-B-type natriuretic peptide) at enrollment (relative to 1000 pg/mL threshold, event rate was 0.42 [HIGH] versus 0.07 [LOW] events/pt-yr), substratification found the lowest risk group (LOW NT-proBNP and OUT of alert) experienced 0.02 events/pt-yr, whereas the highest risk group (HIGH NT-proBNP and IN alert) was associated with a 50-fold increased risk of an HF event (1.00 events/pt-yr) relative to the lowest risk group.

CONCLUSIONS

Dynamic assessment using implantable device sensors within HeartLogic by itself or in conjunction with NT-proBNP measurements can identify time-intervals when patients are at significantly increased risk of worsening HF and potentially better triage resources to this vulnerable patient population.

CLINICAL TRIAL REGISTRATION

https://www.clinicaltrials.gov. Unique identifier: NCT01128166.

摘要

背景

心力衰竭(HF)患者的护理对医疗资源造成了很大的负担,因此准确预测预后对于明智地分配资源变得越来越重要。利钠肽被推荐用于慢性 HF 的预后预测。我们的目的是评估多传感器 HF 指数和警报算法(HeartLogic)是否可以替代或增强当前的 HF 风险分层。

方法和结果

MultiSENSE(多传感器慢性心力衰竭患者评估)纳入了 900 名装有心脏再同步治疗除颤器的患者,该设备可采集心音、呼吸、胸阻抗、心率和活动数据。HeartLogic 算法自动计算每日 HF 指数,并根据可配置的阈值确定相对于活跃警报状态的 IN 或 OUT 时段。在 1 年的随访期间,患者经历了 192 次独立裁定的 HF 事件(平均发生率为 0.20/患者年[pt-yr])。处于警报状态的 HF 事件发生率是处于警报状态 OUT 的 10 倍(0.80 与 0.08 事件/pt-yr)。结合入院时的 NT-proBNP(N 端脑利钠肽前体)(相对于 1000 pg/mL 阈值,事件发生率为 0.42[高]与 0.07[低]事件/pt-yr),分层发现风险最低的组(低 NT-proBNP 和 OUT 于警报)经历了 0.02 次/pt-yr 的事件,而风险最高的组(高 NT-proBNP 和 IN 警报)与风险最低的组相比,HF 事件的风险增加了 50 倍(1.00 次/pt-yr)。

结论

使用 HeartLogic 中的植入式设备传感器进行动态评估,无论是单独使用还是与 NT-proBNP 测量结合使用,都可以确定患者 HF 恶化风险显著增加的时间段,并可能更好地为这一脆弱患者群体分配资源。

临床试验注册

https://www.clinicaltrials.gov。唯一标识符:NCT01128166。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验