Science. 2018 Jul 13;361(6398). doi: 10.1126/science.aat1378. Epub 2018 Jul 12.
Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of ~290 tera-electron volts. Its arrival direction was consistent with the location of a known γ-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multiwavelength campaign followed, ranging from radio frequencies to γ-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy γ-rays. This observation of a neutrino in spatial coincidence with a γ-ray-emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos.
先前对中微子的天体物理源的个别探测仅限于太阳和超新星 1987A,而高能宇宙中微子的弥漫通量的起源仍未确定。2017 年 9 月 22 日,我们探测到了一个能量约为 290 太电子伏特的高能中微子,IceCube-170922A。它的到达方向与一个已知的γ射线耀变体 TXS 0506+056 的位置一致,该耀变体被观测到处于爆发状态。随后进行了广泛的多波长观测,范围从无线电频率到γ射线。这些观测描绘了耀变体的可变性和能量学,并包括在甚高能γ射线中探测到 TXS 0506+056。在活跃期,一个与发射γ射线的耀变体在空间上吻合的中微子的观测结果表明,耀变体可能是高能中微子的来源。