Suppr超能文献

基于荧光的膜受体寡聚化监测方法。

Fluorescence-based approaches for monitoring membrane receptor oligomerization.

作者信息

Clayton Andrew Ha

机构信息

Cell Biophysics Laboratory, Centre for Micro-Photonics, Department of Physics and Astronomy, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Australia,

出版信息

J Biosci. 2018 Jul;43(3):463-469.

Abstract

Membrane protein structures are highly under-represented relative to water-soluble protein structures in the protein databank. This is especially the case because membrane proteins represent more than 30% of proteins encoded in the human genome yet contribute to less than 10% of currently known structures (Torres et al. in Trends Biol Sci 28:137-144, 2003). Obtaining high-resolution structures of membrane proteins by traditional methods such as NMR and x-ray crystallography is challenging, because membrane proteins are difficult to solubilise, purify and crystallize. Consequently, development of methods to examine protein structure in situ is highly desirable. Fluorescence is highly sensitive to protein structure and dynamics (Lakowicz in Principles of fluorescence spectroscopy, Springer, New York, 2007). This is mainly because of the time a fluorescence probe molecule spends in the excited state. Judicious choice and placement of fluorescent molecule(s) within a protein(s) enables the experimentalist to obtain information at a specific site(s) in the protein (complex) of interest. Moreover, the inherent multi-dimensional nature of fluorescence signals across wavelength, orientation, space and time enables the design of experiments that give direct information on protein structure and dynamics in a biological setting. The purpose of this review is to introduce the reader to approaches to determine oligomeric state or quaternary structure at the cell membrane surface with the ultimate goal of linking the oligomeric state to the biological function. In the first section, we present a brief overview of available methods for determining oligomeric state and compare their advantages and disadvantages. In the second section, we highlight some of the methods developed in our laboratory to address contemporary questions in membrane protein oligomerization. In the third section, we outline our approach to determine the link between protein oligomerization and biological activity.

摘要

相对于蛋白质数据库中的水溶性蛋白质结构,膜蛋白结构的数量严重不足。尤其如此的原因是,膜蛋白占人类基因组编码蛋白质的30%以上,但在目前已知的结构中所占比例却不到10%(Torres等人,《Trends Biol Sci》,2003年,第28卷,第137 - 144页)。通过传统方法如核磁共振(NMR)和X射线晶体学来获得膜蛋白的高分辨率结构具有挑战性,因为膜蛋白难以溶解、纯化和结晶。因此,非常需要开发原位检测蛋白质结构的方法。荧光对蛋白质结构和动力学高度敏感(Lakowicz,《荧光光谱原理》,施普林格出版社,纽约,2007年)。这主要是因为荧光探针分子在激发态所花费的时间。在蛋白质内明智地选择和放置荧光分子,能使实验人员在感兴趣的蛋白质(复合物)的特定位点获得信息。此外,荧光信号在波长、方向、空间和时间上固有的多维性质,使得能够设计出在生物环境中直接提供蛋白质结构和动力学信息的实验。本综述的目的是向读者介绍在细胞膜表面确定寡聚状态或四级结构的方法,最终目标是将寡聚状态与生物学功能联系起来。在第一部分,我们简要概述了用于确定寡聚状态的现有方法,并比较它们的优缺点。在第二部分,我们重点介绍我们实验室开发的一些方法,以解决膜蛋白寡聚化方面的当代问题。在第三部分,我们概述了确定蛋白质寡聚化与生物活性之间联系的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验