Suppr超能文献

基于 60GHz 多普勒雷达的人体生命体征估计的边界约束优化算法。

Estimation of Human Body Vital Signs Based on 60 GHz Doppler Radar Using a Bound-Constrained Optimization Algorithm.

机构信息

Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking (IPCAN), College of Information Science and Electronic Engineering (ISEE), Zhejiang University, Hangzhou 310027, China.

Sorbonne Universités, UR2, L2E, F-75005 Paris, France.

出版信息

Sensors (Basel). 2018 Jul 12;18(7):2254. doi: 10.3390/s18072254.

Abstract

In this study, a bound-constrained optimization algorithm is applied for estimating physiological data (pulse and breathing rate) of human body using 60 GHz Doppler radar, by detecting displacements induced by breathing and the heartbeat of a human subject. The influence of mutual phasing between the two movements is analyzed in a theoretical framework and the application of optimization algorithms is proved to be able to accurately detect both breathing and heartbeat rates, despite intermodulation effects between them. Different optimization procedures are compared and shown to be more robust to receiver noise and artifacts of random body motion than a direct spectrum analysis. In case of a large-scale constrained bound, a parallel optimization procedure executed in subranges is proposed to realize accurate detection in a reduced span of time.

摘要

在这项研究中,应用了一种有界约束优化算法,通过检测人体呼吸和心跳引起的位移,利用 60GHz 多普勒雷达估计人体的生理数据(脉搏和呼吸频率)。在理论框架中分析了这两种运动之间相互调相的影响,并且证明了优化算法的应用能够准确地检测呼吸和心跳率,尽管它们之间存在互调效应。比较了不同的优化过程,并且表明与直接的频谱分析相比,它们对接收器噪声和随机身体运动的伪影更具有鲁棒性。在有大规模约束边界的情况下,提出了一种在子范围内执行的并行优化过程,以在缩短的时间跨度内实现准确检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fab/6068558/154f95b46045/sensors-18-02254-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验