Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
Biology and Translational Research Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical. Co. Ltd., Tokushima, Japan.
Sci Rep. 2018 Jul 12;8(1):10548. doi: 10.1038/s41598-018-28439-1.
Diabetic nephropathy (DN) is the major cause of end-stage renal failure and is associated with increased morbidity and mortality compared with other causes of renal diseases. We previously found that Smad1 plays a critical role in the development of DN both in vitro and in vivo. However, functional interaction between Smad1 and Smad3 signaling in DN is unclear. Here, we addressed the molecular interplay between Smad1 and Smad3 signaling under a diabetic condition by using Smad3-knockout diabetic mice. Extracellular matrix (ECM) protein overexpression and Smad1 activation were observed in the glomeruli of db/db mice but were suppressed in the glomeruli of Smad3; db/db mice. Smad3 activation enhanced the phosphorylation of Smad1 C-terminal domain but decreased the phosphorylation of linker domain, thus regulating Smad1 activation in advanced glycation end product-treated mesangial cells (MCs). However, forced phosphorylation of the Smad1 linker domain did not affect Smad3 activation in MCs. Phosphorylation of the Smad1 linker domain increased in Smad3; db/db mice and probucol-treated db/db mice, which was consistent with the attenuation of ECM overproduction. These results indicate that Smad3 expression and activation or probucol treatment alters Smad1 phosphorylation, thus suggesting new molecular mechanisms underlying DN development and progression.
糖尿病肾病(DN)是终末期肾衰竭的主要原因,与其他肾脏疾病相比,其发病率和死亡率更高。我们之前发现 Smad1 在体外和体内均在 DN 的发展中起关键作用。然而,DN 中 Smad1 和 Smad3 信号之间的功能相互作用尚不清楚。在这里,我们通过使用 Smad3 敲除糖尿病小鼠来研究糖尿病条件下 Smad1 和 Smad3 信号之间的分子相互作用。db/db 小鼠的肾小球中观察到细胞外基质(ECM)蛋白表达过度和 Smad1 激活,但在 Smad3;db/db 小鼠的肾小球中被抑制。Smad3 激活增强了 Smad1 C 末端结构域的磷酸化,但降低了连接子结构域的磷酸化,从而调节晚期糖基化终产物处理的肾小球系膜细胞(MCs)中的 Smad1 激活。然而,Smad1 连接子结构域的强制磷酸化不会影响 MCs 中的 Smad3 激活。Smad3;db/db 小鼠和普罗布考处理的 db/db 小鼠中 Smad1 连接子结构域的磷酸化增加,与 ECM 过度产生的衰减一致。这些结果表明 Smad3 的表达和激活或普罗布考治疗改变了 Smad1 的磷酸化,从而提示了 DN 发展和进展的新分子机制。