Suppr超能文献

基于具有递归卷积神经网络的深度学习的肌电控制传感器融合

Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks.

作者信息

Wang Weiming, Chen Biao, Xia Peng, Hu Jie, Peng Yinghong

机构信息

School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Artif Organs. 2018 Sep;42(9):E272-E282. doi: 10.1111/aor.13153. Epub 2018 Jul 13.

Abstract

Electromyogram (EMG) signal decoding is the essential part of myoelectric control. However, traditional machine learning methods lack the capability of learning and expressing the information contained in EMG signals, and the robustness of the myoelectric control system is not sufficient for real life applications. In this article, a novel model based on recurrent convolutional neural networks (RCNNs) is proposed for hand movement classification and tested on the noninvasive EMG dataset. The proposed model uses deep architecture, which has advantages of dealing with complex time-series data, such as EMG signals. Transfer learning is used in the training of multimodal model. The classification performance is compared with support vector machine (SVM) and convolutional neural networks (CNNs) on the same dataset. To improve the adaptability to the effect of arm movements, we fused the EMG signals and acceleration data that are the multimodal input of the model. The parameter transferring of deep neural networks is used to accelerate the training process and avoid over-fitting. The experimental results show that time domain input and 1-dimensional convolution have higher accuracy in the RCNN model. Compared with SVM and CNNs, the proposed model has higher classification accuracy. Sensor fusion can improve the model performance in the condition of arm movements. The RCNN model is a promising decoder of EMG and the sensor fusion can increase the accuracy and robustness of the myoelectric control system.

摘要

肌电图(EMG)信号解码是肌电控制的关键部分。然而,传统的机器学习方法缺乏学习和表达EMG信号中所含信息的能力,并且肌电控制系统的鲁棒性不足以满足实际生活应用。在本文中,提出了一种基于循环卷积神经网络(RCNN)的新型模型用于手部运动分类,并在无创EMG数据集上进行了测试。所提出的模型采用深度架构,具有处理诸如EMG信号等复杂时间序列数据的优势。在多模态模型的训练中使用了迁移学习。在同一数据集上,将分类性能与支持向量机(SVM)和卷积神经网络(CNN)进行了比较。为了提高对手臂运动影响的适应性,我们融合了EMG信号和加速度数据,它们是模型的多模态输入。利用深度神经网络的参数转移来加速训练过程并避免过拟合。实验结果表明,在RCNN模型中时域输入和一维卷积具有更高的准确率。与SVM和CNN相比,所提出的模型具有更高的分类准确率。传感器融合可以在手臂运动的情况下提高模型性能。RCNN模型是一种很有前景的EMG解码器,并且传感器融合可以提高肌电控制系统的准确性和鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验