Institut für Theoretische Physik, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany.
Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt, Germany.
Phys Rev Lett. 2018 Jun 29;120(26):261103. doi: 10.1103/PhysRevLett.120.261103.
We explore in a parameterized manner a very large range of physically plausible equations of state (EOSs) for compact stars for matter that is either purely hadronic or that exhibits a phase transition. In particular, we produce two classes of EOSs with and without phase transitions, each containing one million EOSs. We then impose constraints on the maximum mass (M<2.16 M_{⊙}) and on the dimensionless tidal deformability (Λ[over ˜]<800) deduced from GW170817, together with recent suggestions of lower limits on Λ[over ˜]. Exploiting more than 10^{9} equilibrium models for each class of EOSs, we produce distribution functions of all the stellar properties and determine, among other quantities, the radius that is statistically most probable for any value of the stellar mass. In this way, we deduce that the radius of a purely hadronic neutron star with a representative mass of 1.4 M_{⊙} is constrained to be 12.00<R_{1.4}/km<13.45 at a 2σ confidence level, with a most likely value of R[over ¯]{1.4}=12.39 km; similarly, the smallest dimensionless tidal deformability is Λ[over ˜]_{1.4}>375, again at a 2σ level. On the other hand, because EOSs with a phase transition allow for very compact stars on the so-called "twin-star" branch, small radii are possible with such EOSs although not probable, i.e., 8.53<R{1.4}/km<13.74 and R[over ¯]{1.4}=13.06 km at a 2σ level, with Λ[over ˜]_{1.4}>35.5 at a 3σ level. Finally, since these EOSs exhibit upper limits on Λ[over ˜], the detection of a binary with a total mass of 3.4 M{⊙} and Λ[over ˜]_{1.7}>461 can rule out twin-star solutions.
我们以参数化的方式探索了非常广泛的适用于致密星的物理上合理的状态方程(EOS),这些致密星中的物质要么是纯粹的强子,要么表现出相变。特别是,我们生成了两类具有和不具有相变的 EOS,每类都包含 100 万个 EOS。然后,我们根据 GW170817 推断出的最大质量(M<2.16 M_{⊙})和无量纲潮汐变形(Λ[over ˜]<800),以及最近对Λ[over ˜]下限的建议,对这些 EOS 进行了约束。利用每类 EOS 的超过 10^{9}个平衡模型,我们生成了所有恒星性质的分布函数,并确定了其他数量,例如对于任何恒星质量值,统计上最可能的半径。通过这种方式,我们推断出具有代表性质量为 1.4 M_{⊙}的纯强子中子星的半径被限制为 12.00<R_{1.4}/km<13.45,置信度为 2σ,最可能的半径值为 R[over ¯]{1.4}=12.39 km;同样,最小的无量纲潮汐变形为 Λ[over ˜]_{1.4}>375,置信度同样为 2σ。另一方面,由于具有相变的 EOS 允许在所谓的“双星”分支上存在非常紧凑的恒星,因此即使不太可能,也可以使用这种 EOS 获得较小的半径,即 8.53<R{1.4}/km<13.74 和 R[over ¯]{1.4}=13.06 km,置信度为 2σ,Λ[over ˜]_{1.4}>35.5,置信度为 3σ。最后,由于这些 EOS 对 Λ[over ˜]有上限,因此检测到总质量为 3.4 M{⊙}且 Λ[over ˜]_{1.7}>461 的双星可以排除双星解。