Suppr超能文献

在双中子星模拟中运用深度学习技术实现从保守状态到原始状态的恢复。

Employing deep-learning techniques for the conservative-to-primitive recovery in binary neutron star simulations.

作者信息

Mudimadugula Ranjith, Schianchi Federico, Neuweiler Anna, Wouters Thibeau, Gieg Henrique, Dietrich Tim

机构信息

Institut für Physik und Astronomie, Universität Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.

Departament de Fısica & IAC3, Universitat de les Illes Balears, Palma de Mallorca, 07122 Baleares, Spain.

出版信息

Eur Phys J A Hadron Nucl. 2025;61(8):193. doi: 10.1140/epja/s10050-025-01661-y. Epub 2025 Aug 20.

Abstract

The detection of GW170817, together with its electromagnetic counterparts, has proven that binary neutron star mergers are of central importance to the field of nuclear astrophysics, e.g., through a better understanding of the formation of elements and novel constraints on the supranuclear dense equation of state governing the matter inside neutron stars. Essential for understanding the binary coalescence are numerical-relativity simulations, which typically come with high computational costs requiring high-performance computing facilities. In this work, we build on recent studies to investigate whether novel techniques, such as neural networks, can be employed in the conversion of conservative variables to primitive hydrodynamical variables, such as pressure and density. In this regard, we perform - to the best of our knowledge - the first binary neutron star merger simulations in which such methods are employed. We show that this method results in stable simulations, reaching accuracies similar to traditional methods with an overall comparable computational cost. These simulations serve as a proof of principle that, in the future, deep learning techniques could be used within numerical-relativity simulations. However, further improvements are necessary to offer a computational advantage compared to traditional methods.

摘要

GW170817及其电磁对应体的探测已证明,双中子星合并在核天体物理学领域至关重要,例如,通过更好地理解元素的形成以及对支配中子星内部物质的超核致密状态方程的新约束。数值相对论模拟对于理解双体合并至关重要,而这种模拟通常计算成本很高,需要高性能计算设施。在这项工作中,我们基于最近的研究来调查是否可以采用诸如神经网络等新技术,将守恒变量转换为原始流体动力学变量,如压力和密度。在这方面,据我们所知,我们进行了首次采用此类方法的双中子星合并模拟。我们表明,这种方法能实现稳定的模拟,达到与传统方法相似的精度,且总体计算成本相当。这些模拟证明了一个原理,即未来深度学习技术可用于数值相对论模拟。然而,与传统方法相比,还需要进一步改进以提供计算优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3ca/12367916/5ebe21fe6e32/10050_2025_1661_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验