Suppr超能文献

从刚地弓形虫中鉴定出高度分化的新型顶复门 F 型 ATP 合酶亚基组成。

Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii.

机构信息

Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India.

Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

出版信息

PLoS Biol. 2018 Jul 13;16(7):e2006128. doi: 10.1371/journal.pbio.2006128. eCollection 2018 Jul.

Abstract

The mitochondrial F-type ATP synthase, a multisubunit nanomotor, is critical for maintaining cellular ATP levels. In T. gondii and other apicomplexan parasites, many subunit components necessary for proper assembly and functioning of this enzyme appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomeric (approximately 600 kDa) and dimeric (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits a, b, and d can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid, and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex could facilitate the development of novel antiparasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.

摘要

线粒体 F 型 ATP 合酶是一种多亚基纳米马达,对于维持细胞内的 ATP 水平至关重要。在刚地弓形虫和其他顶复门寄生虫中,许多对于该酶正确组装和功能所必需的亚基组分似乎缺失了。在这里,我们通过对部分纯化的单体(约 600 kDa)和二聚体(>1 MDa)形式的酶进行质谱分析,鉴定了 20 种新的刚地弓形虫 F 型 ATP 合酶亚基。尽管序列高度多样化,但可以从保守的结构特征中识别出 FO 亚基 a、b 和 d。这些蛋白质的同源物仅限于顶复门、Chromera 和甲藻门物种。有趣的是,它们在纤毛类动物中的缺失表明,在有孔虫类分支中,该酶的亚基组成发生了重大变化。顶复门 F 型 ATP 合酶复合物中这些高度多样化的新型组件的发现,可以促进新型抗寄生虫药物的开发。对这种不寻常的酶复合物的结构和功能进行表征,将有助于我们深入理解顶复门物种的能量代谢。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5418/6059495/032c2d055158/pbio.2006128.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验