Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
John de Laeter Centre, Curtin University, Perth, Western Australia 6102, Australia.
J Colloid Interface Sci. 2018 Nov 15;530:556-566. doi: 10.1016/j.jcis.2018.07.010. Epub 2018 Jul 4.
Unreliable energy supply and environmental pollution are two major concerns of the human society in this century. Herein, we report a rational approach on preparation of hierarchically-structured cobalt-carbon composites with tunable properties for a number of applications. A facile hydrothermal treatment of cobalt nitrate and sucrose results in the formation of a metallic cobalt-amorphous carbon composite with cobalt nanospheres anchored homogenously on an amorphous carbon substrate. Tuning the calcination conditions in air will generate either a metallic cobalt-cobalt oxide core-shell structure with magnetism or a fully oxidized CoO composite. The different materials are demonstrated as anodes for lithium-ion batteries (LIBs) and catalysts for advanced oxidation-based wastewater remediation. A fully oxidized composite (FC@CS, fully oxidized Co loaded on carbon spheres) as a LIB anode exhibits superior electrochemical performance, possessing a high reversible capacity, high initial columbic efficiency, outstanding cycling performance and excellent rate capability. The anode performance is superior to most reported CoO-based electrodes. Meanwhile, the partially oxidized composite (PC@CS, partially oxidized Co loaded on carbon spheres) functions as an efficient and stable catalyst for removal of phenol via peroxymonosulfate (PMS) activation, which is demonstrated via electron paramagnetic resonance (EPR) and quenching experiments for generation of radicals. More importantly, the recycled PC@CS can be further applied as a LIBs anode after full oxidation regeneration, performing comparably to FC@CS. This FC@CS → PC@CS → FC@CS transformation provides an innovative approach for efficient material synthesis, recycling and application.
能源供应不可靠和环境污染是本世纪人类社会面临的两大问题。在此,我们报告了一种合理的方法,用于制备具有可调性质的分级结构钴-碳复合材料,以应用于多种领域。通过简单的水热处理硝酸钴和蔗糖,可以得到一种金属钴-无定形碳复合材料,钴纳米球均匀锚定在无定形碳基底上。通过调整在空气中的煅烧条件,可以生成具有磁性的金属钴-钴氧化物核壳结构或完全氧化的 CoO 复合材料。不同的材料被证明是锂离子电池 (LIB) 的阳极和基于高级氧化的废水修复的催化剂。作为 LIB 阳极的完全氧化复合材料 (FC@CS,完全氧化的 Co 负载在碳球上) 具有优异的电化学性能,具有高可逆容量、高初始库仑效率、出色的循环性能和优异的倍率性能。该阳极性能优于大多数报道的 CoO 基电极。同时,部分氧化的复合材料 (PC@CS,部分氧化的 Co 负载在碳球上) 作为过一硫酸盐 (PMS) 活化去除苯酚的高效稳定催化剂,通过电子顺磁共振 (EPR) 和淬灭实验证明了自由基的生成。更重要的是,在完全氧化再生后,可回收的 PC@CS 可进一步用作 LIBs 阳极,性能与 FC@CS 相当。这种 FC@CS → PC@CS → FC@CS 的转化为高效的材料合成、回收和应用提供了一种创新的方法。