Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, Paraná, Brazil.
Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976, Pontal do Paraná, Paraná, Brazil.
Environ Pollut. 2018 Nov;242(Pt A):449-461. doi: 10.1016/j.envpol.2018.07.004. Epub 2018 Jul 4.
Biomarkers of antioxidant and biotransformation systems are commonly used to assess polycyclic aromatic hydrocarbons (PAHs) pollution in fish. Despite their extensive application of biomarkers, contradictory results are vastly reported in the literature, even for the same species in similar contamination scenarios. This study aims to verify response patterns of biomarkers in fish exposed to PAHs. Through systematic reviews and meta-analyses, we were able to evaluate: (i) overall magnitude of PAHs effects on biotransformation and oxidative stress biomarkers; (ii) patterns of response among experimental approaches (laboratory, field and active biomonitoring), environment (marine and freshwater) and fish habitat (pelagic, demersal, etc.); (iii) effects of exposure route, time and concentration of PAHs; and (iv) which biomarkers respond best to PAHs exposure. Overall, biomarker responses were significantly affected by PAHs exposure. The activities of ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), superoxide dismutase (SOD), glutathione peroxidase (GPx) and levels of oxidized glutathione (GSSG) and lipid peroxide (LPO) significantly increased in fish exposed to PAHs, whereas catalase (CAT) and glutathione reductase (GR) activities and levels of reduced glutathione (GSH) were not affected. Amongst responsive biomarkers, EROD and GST activities significantly differed among approaches and between marine and freshwater environments, but were not affected by fish habitat. GSSG levels were higher in fish from laboratory bioassays compared to the field, but did not differ between environments nor habitats. Exposure route played a major role only for GST and GPx responses. Finally, increasing PAHs concentration and exposure time had a significant effect on all assessed biomarkers, except for CAT. We conclude that EROD and GST are robust biomarkers to assess PAHs effects in fish. Contrarily, CAT is an inadequate biomarker of PAHs exposure since no significant response was observed. Our study also highlighted some research gaps in PAHs contamination studies, such as a clear lack of active biomonitoring experiments.
生物标志物的抗氧化和生物转化系统通常用于评估多环芳烃 (PAHs) 在鱼类中的污染。尽管生物标志物已广泛应用,但即使在相似污染情况下,对于同一物种,文献中也大量报告了相互矛盾的结果。本研究旨在验证鱼类暴露于多环芳烃时生物标志物的反应模式。通过系统评价和荟萃分析,我们能够评估:(i) 多环芳烃对生物转化和氧化应激生物标志物的影响总体幅度;(ii) 实验方法(实验室、野外和主动生物监测)、环境(海洋和淡水)和鱼类栖息地(浮游、底栖等)之间的反应模式;(iii) 多环芳烃暴露途径、时间和浓度的影响;以及 (iv) 哪些生物标志物对多环芳烃暴露的反应最好。总的来说,生物标志物的反应受到多环芳烃暴露的显著影响。接触多环芳烃后,鱼类中乙氧基Resorufin-O-去乙基酶 (EROD)、谷胱甘肽 S-转移酶 (GST)、超氧化物歧化酶 (SOD)、谷胱甘肽过氧化物酶 (GPx) 的活性以及氧化型谷胱甘肽 (GSSG) 和脂质过氧化物 (LPO) 的水平显著升高,而过氧化氢酶 (CAT) 和谷胱甘肽还原酶 (GR) 的活性以及还原型谷胱甘肽 (GSH) 的水平不受影响。在反应性生物标志物中,EROD 和 GST 活性在方法之间以及海洋和淡水环境之间存在显著差异,但不受鱼类栖息地的影响。与野外相比,实验室生物测定中鱼类的 GSSG 水平更高,但环境和栖息地之间没有差异。暴露途径仅对 GST 和 GPx 的反应起主要作用。最后,除 CAT 外,所有评估的生物标志物均随多环芳烃浓度和暴露时间的增加而显著变化。我们得出结论,EROD 和 GST 是评估鱼类多环芳烃影响的可靠生物标志物。相反,CAT 是多环芳烃暴露的不适当生物标志物,因为没有观察到显著的反应。我们的研究还强调了多环芳烃污染研究中的一些研究空白,例如明显缺乏主动生物监测实验。