NIH Stem Cell Characterization Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
NIH Stem Cell Characterization Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
Trends Mol Med. 2018 Sep;24(9):805-820. doi: 10.1016/j.molmed.2018.06.009. Epub 2018 Jul 11.
Use of human pluripotent stem cells (hPSCs) and their differentiated derivatives have led to recent proof-of-principle drug discoveries, defining a pathway to the implementation of hPSC-based drug discovery (hPDD). Current hPDD strategies, however, have inevitable conceptual biases and technological limitations, including the dimensionality of cell-culture methods, cell maturity and functionality, experimental variability, and data reproducibility. In this review, we dissect representative hPDD systems via analysis of hPSC-based 2D-monolayers, 3D culture, and organoids. We discuss mechanisms of drug discovery and drug repurposing, and roles of membrane drug transporters in tissue maturation and hPDD using the example of drugs that target various mutations of CFTR, the cystic fibrosis transmembrane conductance regulator gene, in patients with cystic fibrosis.
利用人类多能干细胞(hPSCs)及其分化衍生物,最近已经取得了原理验证药物发现的成果,为基于 hPSC 的药物发现(hPDD)铺平了道路。然而,当前的 hPDD 策略存在不可避免的概念偏见和技术限制,包括细胞培养方法的维度、细胞成熟度和功能、实验变异性以及数据可重复性。在这篇综述中,我们通过分析基于 hPSC 的 2D 单层、3D 培养和类器官,剖析了代表性的 hPDD 系统。我们以靶向囊性纤维化跨膜电导调节因子(CFTR)基因突变的药物为例,讨论了药物发现和药物再利用的机制,以及膜药物转运体在组织成熟和 hPDD 中的作用。CFTR 是囊性纤维化的致病基因。