Private practice, Madrid, Spain; Affiliate Faculty, Graduate Prosthodontics University of Washington, Seattle, Wash; Project Manager and researcher, Revilla Research Center and Collaborating Faculty Graduate Program in Aesthetic Dentistry, Complutense University of Madrid, Madrid, Spain.
Associate Professor, Area of Stomatology, Rey Juan Carlos University, Madrid, Spain.
J Prosthet Dent. 2018 Dec;120(6):942-947. doi: 10.1016/j.prosdent.2018.02.010. Epub 2018 Jul 10.
Titanium frameworks for implant-supported prostheses can be additively manufactured using different powder-based fusion technologies, including selective laser melting (SLM) and electron beam melting (EBM). Some manufacturers have developed a technique that combines the printing of the framework with the subsequent machining of the implant interface. Whether these technologies produce frameworks with acceptable accuracies is unclear.
The purpose of this in vitro study was to evaluate the discrepancy obtained from the digitizing procedures of the definitive cast, the implant-prosthesis discrepancy, and the distortion of the manufacturing processes in the fabrication of titanium frameworks for implant-supported complete-arch prostheses manufactured using SLM and EBM additive manufacturing technologies.
A completely edentulous mandibular definitive cast with 4 implant analogs and a replica of a screw-retained interim restoration was obtained. A standard tessellation language (STL) file of the framework design was prepared using dental software (Exocad). Six frameworks were manufactured using either SLM (3D Systems) or EBM (Arcam) technologies. Discrepancy (μm) was measured at the x- (mesiodistal), y- (buccolingual), and z- (occlusogingival) axes by using the formula 3D=x+y+z three times by best-fit superimposure of the definitive cast STL file, the definitive cast titanium framework, and the framework STL file by using a coordinate measuring machine (CMM) controlled by software (Geomagic). The Kruskal-Wallis and Mann-Whitney U statistical tests were used (α=.05).
The digitizing procedures of the definitive cast showed a mean accuracy of 3 ±3 μm. Except for the z-axis (P<.05), no significant differences were observed between the SLM and EBM technologies for implant prosthesis discrepancy for the x- or y-axis (P>.05). The most favorable results were obtained in the z-axis, representing the occlusogingival direction. Three-dimensional discrepancy measurements in all comparisons ranged between (60 ±18 μm and 69 ±30 μm) and were not statistically significant (P>.05). The highest discrepancy was observed in the y-axis (37 to 56 μm), followed by the x- (16 to 44 μm) and z- (6 to 11 μm) axes (P<.05).
The titanium frameworks analyzed for a complete-arch implant-supported prosthesis fabricated using either the SLM or EBM additive technologies showed a clinically acceptable implant-prosthesis discrepancy, where similar discrepancies on the x-, y-, and z-axes were found between the additive manufacturing technologies. Both technologies showed comparable abilities to manufacture the STL file additively on the x-, y-, and z-axes.
钛框架可通过不同的粉末融合技术(包括选择性激光熔化和电子束熔化)进行增材制造,用于种植体支持的修复体。一些制造商开发了一种将框架打印与种植体接口后续加工相结合的技术。这些技术制造的框架精度是否可以接受尚不清楚。
本体外研究的目的是评估通过数字化处理最终模型、种植体-修复体之间的差异以及制造过程中产生的变形,来评估使用选择性激光熔化和电子束熔化增材制造技术制造的种植体支持全颌修复体的钛框架的差异。
获得带有 4 个种植体模拟体和螺丝固位临时修复体复制品的完全无牙下颌最终模型。使用牙科软件(Exocad)准备框架设计的标准三角测量语言(STL)文件。使用选择性激光熔化(3D Systems)或电子束熔化(Arcam)技术制造 6 个框架。通过最佳拟合重叠最终模型 STL 文件、最终模型钛框架和框架 STL 文件,使用软件(Geomagic)控制的坐标测量机(CMM),在 X 轴(近远中)、Y 轴(颊舌)和 Z 轴(牙合龈向)上测量三次,计算差异(μm)。采用 Kruskal-Wallis 和 Mann-Whitney U 统计检验(α=0.05)。
最终模型的数字化处理程序的平均精度为 3±3μm。除了 Z 轴(P<0.05),SLM 和 EBM 技术在 X 轴或 Y 轴上的种植体-修复体差异没有统计学意义(P>.05)。在所有比较中,最有利的结果是在代表牙合龈向的 Z 轴上获得的。在所有比较中,三维差异测量值在(60±18μm 和 69±30μm)之间,没有统计学意义(P>.05)。在 Y 轴(37 至 56μm)观察到的差异最大,其次是 X 轴(16 至 44μm)和 Z 轴(6 至 11μm)(P<0.05)。
用于全颌种植体支持修复体的 SLM 或 EBM 增材制造技术制造的钛框架,其种植体-修复体差异具有临床可接受性,两种增材制造技术在 X、Y 和 Z 轴上的差异相似。两种技术在 X、Y 和 Z 轴上均具有相似的能力来进行 STL 文件的增材制造。