Suppr超能文献

RGS9-2 在调节背侧纹状体间接通路中间神经元逆行突触传递中的选择性作用。

Selective Role of RGS9-2 in Regulating Retrograde Synaptic Signaling of Indirect Pathway Medium Spiny Neurons in Dorsal Striatum.

机构信息

Department of Neuroscience, Scripps Research Institute, Jupiter, Florida 33458.

Department of Neuroscience, Scripps Research Institute, Jupiter, Florida 33458

出版信息

J Neurosci. 2018 Aug 8;38(32):7120-7131. doi: 10.1523/JNEUROSCI.0493-18.2018. Epub 2018 Jul 13.

Abstract

In the striatum, medium spiny neurons (MSNs) are heavily involved in controlling movement and reward. MSNs form two distinct populations expressing either dopamine receptor 1 (D1-MSN) or dopamine receptor 2 (D2-MSN), which differ in their projection targets and neurochemical composition. The activity of both types of MSNs is shaped by multiple neuromodulatory inputs processed by GPCRs that fundamentally impact their synaptic properties biasing behavioral outcomes. How these GPCR signaling cascades are regulated and what downstream targets they recruit in D1-MSN and D2-MSN populations are incompletely understood. In this study, we examined the cellular and molecular mechanisms underlying the action of RGS9-2, a key GPCR regulator in MSNs implicated in both movement control and actions of addictive drugs. Imaging cultured striatal neurons, we found that ablation of RGS9-2 significantly reduced calcium influx through NMDARs. Electrophysiological recordings in slices confirmed inhibition of NMDAR function in MSNs, resulting in enhanced AMPAR/NMDAR ratio. Accordingly, male mice lacking RGS9-2 displayed behavioral hypersensitivity to NMDAR blockade by MK-801 or ketamine. Recordings from genetically identified populations of striatal neurons revealed that these changes were selective to D2-MSNs. Surprisingly, we found that these postsynaptic effects resulted in remodeling of presynaptic inputs to D2-MSNs increasing the frequency of mEPSC and inhibiting paired-pulse ratio. Pharmacological dissection revealed that these adaptations were mediated by the NMDAR-dependent inhibition of retrograde endocannabinoid signaling from D2-MSNs to CB1 receptor on presynaptic terminals. Together, these data demonstrate a novel mechanism for pathway selective regulation of synaptic plasticity in MSNs controlled by GPCR signaling. This study identifies a role for a major G-protein regulator in controlling synaptic properties of striatal neurons in a pathway selective fashion.

摘要

在纹状体中,中间神经元(MSNs)在控制运动和奖励方面起着重要作用。MSNs 形成两种不同的群体,分别表达多巴胺受体 1(D1-MSN)或多巴胺受体 2(D2-MSN),它们在投射目标和神经化学组成上存在差异。这两种类型的 MSNs 的活动都受到 GPCR 处理的多种神经调制输入的影响,这些输入从根本上影响它们的突触特性,从而影响行为结果。这些 GPCR 信号级联如何被调节,以及它们在 D1-MSN 和 D2-MSN 群体中招募的下游靶标尚不完全清楚。在这项研究中,我们研究了 RGS9-2 的作用的细胞和分子机制,RGS9-2 是纹状体 MSNs 中一种关键的 GPCR 调节剂,与运动控制和成瘾药物的作用都有关。对培养的纹状体神经元进行成像,我们发现 RGS9-2 的缺失显著减少了 NMDAR 引起的钙内流。在切片中的电生理记录证实了 MSNs 中 NMDAR 功能的抑制,导致 AMPAR/NMDAR 比值增强。相应地,缺乏 RGS9-2 的雄性小鼠对 MK-801 或氯胺酮阻断 NMDAR 的行为敏感性增加。从基因鉴定的纹状体神经元群体中记录发现,这些变化是选择性地针对 D2-MSN 的。令人惊讶的是,我们发现这些突触后效应导致 D2-MSN 对 presynaptic 输入的重塑,增加 mEPSC 的频率并抑制配对脉冲比。药物分离揭示,这些适应是由 NMDAR 依赖性的从 D2-MSN 到 presynaptic 末端 CB1 受体的逆行内源性大麻素信号的抑制介导的。总之,这些数据表明,GPCR 信号控制下,MSNs 中的突触可塑性的通路选择性调节存在一种新的机制。这项研究确定了一种主要的 G 蛋白调节剂在控制纹状体神经元突触特性方面的通路选择性作用。

相似文献

本文引用的文献

1
Synaptic functions of endocannabinoid signaling in health and disease.内源性大麻素信号在健康和疾病中的突触功能。
Neuropharmacology. 2017 Sep 15;124:13-24. doi: 10.1016/j.neuropharm.2017.06.017. Epub 2017 Jun 15.
7
Adaptive gene regulation in the Striatum of RGS9-deficient mice.RGS9基因缺陷小鼠纹状体中的适应性基因调控。
PLoS One. 2014 Mar 24;9(3):e92605. doi: 10.1371/journal.pone.0092605. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验