Suppr超能文献

快速城市化城市中大气气态多环芳烃的时空分布和动态建模:中国南京。

Spatiotemporal distribution and dynamic modeling of atmospheric gaseous polycyclic aromatic hydrocarbons in a rapidly urbanizing city: Nanjing, China.

机构信息

Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Land and Resources, Nanjing, 210017, People's Republic of China.

School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Nanjing, 210023, People's Republic of China.

出版信息

Environ Geochem Health. 2018 Dec;40(6):2603-2616. doi: 10.1007/s10653-018-0126-8. Epub 2018 Jul 13.

Abstract

Multiple studies have evaluated the concentration and lung cancer risk of polycyclic aromatic hydrocarbons (PAHs). However, the monitoring and dynamic modeling of PAHs with a high resolution were relatively insufficient. We investigated the spatiotemporal distribution of gaseous PAH concentrations using passive air samplers with high sampling density in an industrial city of Nanjing, China (January and October 2015) and found that the gaseous PAH concentrations in western Nanjing were higher than those in eastern Nanjing, mainly because of emission source distribution and wind action. There were notable seasonal changes in PAH concentrations: winter > autumn > spring > summer. We developed an atmospheric PAH dynamic model with a high resolution of 1 km based on the advection-diffusion equation and coupled with an emissions inventory and atmospheric transportation processes. Acenaphthene was selected as a proxy for gaseous PAHs. The modeled acenaphthene concentrations were similar to the concentrations measured. Moreover, we used the model to identify the impact of meteorological factors on gaseous PAHs via scenario analysis and found that a narrow-range temperature change and even heavy rainfall may not significantly affect atmospheric gaseous PAH concentrations, whereas the wind played an important part in transferring PAHs and changing their geographic distribution.

摘要

多项研究评估了多环芳烃(PAHs)的浓度和肺癌风险。然而,高分辨率监测和动态建模 PAHs 的工作相对不足。我们使用高采样密度的被动式空气采样器在中国南京市(2015 年 1 月和 10 月)调查了气态 PAHs 浓度的时空分布,发现南京市西部的气态 PAHs 浓度高于东部,主要是由于排放源分布和风向的影响。PAHs 浓度有明显的季节性变化:冬季 > 秋季 > 春季 > 夏季。我们基于平流-扩散方程,并结合排放清单和大气传输过程,开发了一个具有 1km 高分辨率的大气 PAH 动态模型。苊被选为气态 PAHs 的替代物。模拟的苊浓度与实测浓度相似。此外,我们通过情景分析利用模型识别气象因素对气态 PAHs 的影响,发现小范围的温度变化甚至强降雨可能不会显著影响大气气态 PAH 浓度,而风在输送 PAHs 和改变其地理分布方面起着重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验