Suppr超能文献

在 PubMed 中识别治疗效果的调节变量和预测变量的最佳搜索策略。

Optimal search strategies for identifying moderators and predictors of treatment effects in PubMed.

机构信息

Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.

School of Health and Related Research (ScHARR), Health Economics and Decision Science (HEDS), University of Sheffield Regent Court, Sheffield, UK.

出版信息

Health Info Libr J. 2019 Dec;36(4):318-340. doi: 10.1111/hir.12230. Epub 2018 Jul 13.

Abstract

BACKGROUND

Treatment effects differ across patients. To guide selection of treatments for patients, it is essential to acknowledge these differences and identify moderators or predictors. Our aim was to generate optimal search strategies (commonly known as filters) for PubMed to retrieve papers identifying moderators and predictors of treatment effects.

METHODS

Six journals were hand-searched for articles on moderators or predictors. Selected articles were randomly allocated to a development and validation set. Search terms were extracted from the development set and tested for their performance. Search filters were created from combinations of these terms and tested in the validation set.

RESULTS

Of 4407 articles, 198 were considered to be relevant. The most sensitive filter in the development set '("Epidemiologic Methods" [MeSH] OR assign* OR control*[tiab] OR trial*[tiab]) AND therapy*[sh]' yielded in the validation set a sensitivity of 89% [88%-90%] and a specificity of 80% [79%-82%].

CONCLUSIONS

The search filters created in this study can help to efficiently retrieve evidence on moderators and predictors of treatment effect. Testing of the filters in multiple domains should reveal robustness across disciplines. These filters can facilitate the retrieval of evidence on moderators and predictors of treatment effects, helping the implementation of stratified or personalised health care.

摘要

背景

治疗效果在不同患者之间存在差异。为了指导患者选择治疗方法,必须承认这些差异,并确定调节剂或预测因子。我们的目的是为 PubMed 生成最佳搜索策略(通常称为筛选器),以检索确定治疗效果调节剂和预测因子的论文。

方法

手动搜索六本期刊上关于调节剂或预测因子的文章,选择的文章被随机分配到开发和验证集。从开发集中提取搜索术语,并测试其性能。从这些术语的组合中创建搜索过滤器,并在验证集中进行测试。

结果

在 4407 篇文章中,有 198 篇被认为是相关的。在开发集中最敏感的过滤器“(流行病学方法[MeSH]或分配或控制[tiab]或试验*[tiab])和治疗*[sh]”在验证集中的敏感性为 89%[88%-90%],特异性为 80%[79%-82%]。

结论

本研究中创建的搜索过滤器可以帮助有效地检索关于治疗效果调节剂和预测因子的证据。在多个领域测试过滤器可以揭示跨学科的稳健性。这些过滤器可以促进治疗效果调节剂和预测因子证据的检索,有助于实施分层或个性化医疗保健。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验