Suppr超能文献

具有输入饱和和输出约束的严格反馈形式下多智能体系统的分布式零和微分对策。

Distributed zero-sum differential game for multi-agent systems in strict-feedback form with input saturation and output constraint.

机构信息

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China.

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China.

出版信息

Neural Netw. 2018 Oct;106:8-19. doi: 10.1016/j.neunet.2018.06.007. Epub 2018 Jun 25.

Abstract

This paper investigates the distributed differential game tracking problem for nonlinear multi-agent systems with output constraint under a fixed directed graph. Each follower can be taken as strict-feedback structure with uncertain nonlinearities and input saturation. Firstly, by utilizing the command filtered backstepping technique, the distributed tracking control problem of multi-agent systems in strict-feedback form can be transformed into an equivalent distributed differential game problem of tracking error dynamics in affine form by designing a distributed feedforward tracking controller, in which neural networks (NNs) and the auxiliary system are introduced to deal with the unknown nonlinearities and input saturation, respectively. Especially, a novel barrier Lyapunov function (BLF) is firstly introduced to tackle with the output constraint. Subsequently, by using adaptive dynamic programming (ADP) technique, the distributed zero-sum differential game strategy is derived, in which a critic network is constructed to approximate the cooperative cost function online with a novel updating law. Therefore, the whole distributed control scheme not only guarantees the closed-loop signals to be cooperatively uniformly ultimately bounded (CUUB), but also ensures the cooperative cost function to be minimized. Meanwhile, the output constraint and input saturation are not violated. Finally, simulation results demonstrate the effectiveness of the proposed method.

摘要

本文研究了具有输出约束的非线性多智能体系统在固定有向图下的分布式微分对策跟踪问题。每个跟随者都可以采用具有不确定非线性和输入饱和的严格反馈结构。首先,通过利用命令滤波反推技术,通过设计分布式前馈跟踪控制器,将多智能体系统在严格反馈形式下的跟踪控制问题转化为跟踪误差动态的等效分布式微分对策问题,其中引入了神经网络 (NNs) 和辅助系统分别处理未知非线性和输入饱和问题。特别地,首次引入了一种新的障碍李雅普诺夫函数 (BLF) 来解决输出约束问题。随后,通过自适应动态规划 (ADP) 技术,推导出分布式零和微分对策策略,其中构建了一个评价网络,通过一种新的更新律在线逼近合作代价函数。因此,整个分布式控制方案不仅保证闭环信号具有协同一致有界性 (CUUB),而且确保协同代价函数最小化。同时,不会违反输出约束和输入饱和。最后,仿真结果验证了所提出方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验