Institute of Medical Biometry and Statistics, University of Luebeck, Ratzeburger Allee 160, Luebeck, Germany.
Department of Reproductive Medicine and Gynecological Endocrinology, University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, Luebeck, Germany.
Hum Reprod. 2018 Aug 1;33(8):1499-1505. doi: 10.1093/humrep/dey236.
What is the performance of previously established regression models in predicting low and high ovarian response to 150 μg corifollitropin alfa/GnRH-antagonist ovarian stimulation in an independent dataset?
The outcome of ovarian stimulation with 150 μg corifollitropin alfa in a fixed, multiple dose GnRH-antagonist protocol can be validly predicted using logistic regression models with AMH being of paramount importance.
Predictors of ovarian response have been identified in FSH/GnRH agonist protocols as well as ovarian stimulation with corifollitropin alfa/GnRH-antagonist. Multivariable response models have been established already, however, external validation of model performance has so far been lacking.
STUDY DESIGN, SIZE, DURATION: Data from a prospective, multi-centre (n = 5), multi-national, investigator-initiated, observational cohort study were analysed. Infertile women (n = 211), body weight >60 kg, were undergoing ovarian stimulation with 150 μg corifollitropin alfa in a GnRH-antagonist multiple dose protocol for transvaginal oocyte retrieval for IVF. Demographic, sonographic and endocrine parameters were prospectively assessed on cycle Day 2 or 3 of spontaneous menstruation before ovarian stimulation. Main outcomes were low (<6 oocytes) and high (>18 oocytes) ovarian response.
PARTICIPANTS/MATERIALS, SETTING, METHODS: Firstly, previously established prediction models for low ovarian response (LOR) and high ovarian response (HOR) were tested using the original parameters. Secondly, re-estimated parameters generated from the present data were tested on the established models. Thirdly, for the development of new predictive models of both LOR and HOR, several logistic regression models were estimated. Resulting prediction models were compared by means of the area under the receiver operating characteristic curve (AUC) and bias-corrected Akaike's Information Criterion (AICc) to identify the most reasonable model for each scenario.
The previously established prediction models for low and high response performed remarkably well on this dataset (low response AUC 0.8879 (95% CI: 0.8185-0.9573) and high response AUC 0.8909 (95% CI: 0.8251-0.9568)). A newly developed simplified model for LOR with log-transformed AMH values and only age as another covariate showed an AUC of 0.8920 (95% CI: 0.8237-0.9603) with the lowest AICc of all models compared. For predicting HOR, we suggest a simplified model using AMH, FSH and AFC (AUC of 0.8976, 95% CI: 0.8206-0.9746).
LIMITATIONS, REASONS FOR CAUTION: All analyses were done on data from women with a body weight >60 kg. The newly developed simplified models may suffer from overfitting and need to be tested in further independent data sets.
Patient selection for ovarian stimulation with corifollitropin alfa should utilize established response prediction models. The clinical impact of this needs to be evaluated in future studies.
STUDY FUNDING/COMPETING INTEREST(S): The study was funded by university funds. M.O.S., T.L. and I.R.K. have nothing to declare. G.G. has received personal fees and non-financial support from MSD, Ferring, Merck-Serono, Finox, TEVA, IBSA, Glycotope, Abbott, Marckryl Pharma, VitroLife, NMC Healthcare, ReprodWissen, ZIVA and BioSilu.
Not applicable.
在独立数据集上,先前建立的回归模型在预测 150μg 戈那瑞林/拮抗剂卵巢刺激低反应和高反应方面的表现如何?
使用逻辑回归模型,AMH 是最重要的因素,150μg 戈那瑞林在固定、多剂量 GnRH 拮抗剂方案中的卵巢刺激反应结果可以有效预测。
在 FSH/GnRH 激动剂方案以及戈那瑞林/拮抗剂卵巢刺激中已经确定了卵巢反应的预测因子。已经建立了多变量反应模型,但是,模型性能的外部验证迄今为止仍然缺乏。
研究设计、规模、持续时间:分析了一项前瞻性、多中心(n=5)、多国家、研究者发起的、观察性队列研究的数据。接受 150μg 戈那瑞林α的卵巢刺激的不孕妇女(n=211),体重>60kg,采用 GnRH 拮抗剂多剂量方案进行经阴道取卵,用于 IVF。在卵巢刺激前的自然月经周期第 2 或 3 天,前瞻性评估人口统计学、超声和内分泌参数。主要结局是低(<6 个卵)和高(>18 个卵)卵巢反应。
参与者/材料、设置、方法:首先,使用原始参数测试了先前建立的低卵巢反应(LOR)和高卵巢反应(HOR)预测模型。其次,从本研究中重新估计的参数用于现有的模型。第三,为了开发 LOR 和 HOR 的新预测模型,估计了几个逻辑回归模型。通过接收者操作特征曲线(ROC)下的面积(AUC)和校正后的 Akaike 信息准则(AICc)比较产生的预测模型,以确定每个场景中最合理的模型。
先前建立的低反应和高反应预测模型在该数据集上表现非常出色(低反应 AUC 0.8879(95%CI:0.8185-0.9573)和高反应 AUC 0.8909(95%CI:0.8251-0.9568))。一个新开发的简单模型,用于 LOR,使用对数转换的 AMH 值,仅将年龄作为另一个协变量,具有所有模型中最低 AICc 的 AUC 0.8920(95%CI:0.8237-0.9603)。对于预测 HOR,我们建议使用 AMH、FSH 和 AFC 的简化模型(AUC 为 0.8976,95%CI:0.8206-0.9746)。
局限性、谨慎的原因:所有分析均基于体重>60kg 的女性数据进行。新开发的简化模型可能存在过拟合,需要在进一步的独立数据集进行测试。
戈那瑞林刺激的卵巢刺激患者选择应利用现有的反应预测模型。需要在未来的研究中评估这一临床影响。
研究资助/利益冲突:该研究由大学资金资助。M.O.S.、T.L.和 I.R.K.没有任何声明。G.G.从 MSD、Ferring、Merck-Serono、Finox、TEVA、IBSA、Glycotope、Abbott、Marckryl Pharma、VitroLife、NMC Healthcare、ReprodWissen、ZIVA 和 BioSilu 获得了个人费用和非财务支持。
不适用。