Suppr超能文献

具有分子识别能力的结构良好的双金属表面用于化学选择性硝基芳烃氢化反应。

Well-structured bimetallic surface capable of molecular recognition for chemoselective nitroarene hydrogenation.

作者信息

Furukawa Shinya, Takahashi Katsuya, Komatsu Takayuki

机构信息

Department of Chemistry , Tokyo Institute of Technology , 2-12-1-E1-10 Ookayama, Meguro-ku , Tokyo 152-8551 , Japan . Email:

出版信息

Chem Sci. 2016 Jul 1;7(7):4476-4484. doi: 10.1039/c6sc00817h. Epub 2016 Mar 29.

Abstract

Unprecedented molecular recognition ability governed by a simple bimetallic surface is reported. A series of Rh-based ordered alloys supported on silica gel (Rh M /SiO, where M is Bi, Fe, Ga, Ge, In, Ni, Pb, Sb, Sn, or Zn) were tested in the hydrogenation of nitrostyrene to form aminostyrene. RhIn/SiO showed remarkably high catalytic activity and good selectivity under 1 atm H at room temperature. Moreover, various other nitroarenes containing carbonyl, cyano, or halo moieties were selectively hydrogenated into the corresponding amino derivatives using RhIn/SiO. Kinetic study and density functional theory (DFT) calculations revealed that the high selectivity originates from RhIn/SiO adsorbing nitro groups much more favorably than vinyl groups. In addition, the DFT calculations indicated that the RhIn ordered alloy presents concave Rh rows and convex In rows on its surface, which are able to capture the nitro group with end-on geometry while effectively minimizing vinyl-π adsorption. Thus, the specific and highly ordered surface structure of RhIn enables the chemoselective molecular recognition of nitro groups over vinyl groups through geometric and chemical effects.

摘要

据报道,一种简单的双金属表面具有前所未有的分子识别能力。对一系列负载在硅胶上的铑基有序合金(Rh M /SiO,其中M为铋、铁、镓、锗、铟、镍、铅、锑、锡或锌)进行了硝基苯乙烯加氢生成氨基苯乙烯的测试。RhIn/SiO在室温下1个大气压氢气条件下表现出显著的高催化活性和良好的选择性。此外,使用RhIn/SiO可将各种含有羰基、氰基或卤素部分的其他硝基芳烃选择性氢化成相应的氨基衍生物。动力学研究和密度泛函理论(DFT)计算表明,高选择性源于RhIn/SiO对硝基的吸附远比乙烯基有利。此外,DFT计算表明,RhIn有序合金在其表面呈现出凹形的铑排和凸形的铟排,它们能够以端基几何形状捕获硝基,同时有效减少乙烯基-π吸附。因此,RhIn特定且高度有序的表面结构通过几何和化学效应实现了对硝基相对于乙烯基的化学选择性分子识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验