Membrane Biology Laboratory, Interdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India.
Small. 2018 Aug;14(32):e1801192. doi: 10.1002/smll.201801192. Epub 2018 Jul 15.
Controlling the molecular interactions through protein nanopores is crucial for effectively detecting single molecules. Here, the development of a hetero-oligomeric nanopore derived from Nocardia farcinica porin AB (NfpAB) is discussed for single-molecule sensing of biopolymers. Using single-channel recording, the interaction of cyclic oligosaccharides such as cationic cyclodextrins (CDs) of different symmetries and charges with NfpAB is measured. Studies of the transport kinetics of CDs reveal asymmetric geometry and charge distribution of NfpAB. The applied potential promotes the attachment of the cationic CDs to the negatively charged pore surface due to electrostatic interaction. Further, the attached CDs are released from the pore by reversing the applied potential in time-resolved blockages. Release of CDs from the pore depends on its charge, size, and magnitude of the applied potential. The kinetics of CD attachment and release is controlled by fine-tuning the applied potential demonstrating the successful molecular transport across these nanopores. It is suggested that such controlled molecular interactions with protein nanopores using organic templates can be useful for several applications in nanopore technology and single-molecule chemistry.
通过蛋白质纳米孔控制分子相互作用对于有效检测单分子至关重要。在这里,讨论了源自诺卡氏菌外膜孔蛋白 AB(NfpAB)的杂寡聚纳米孔在生物聚合物的单分子传感中的发展。使用单通道记录,测量了不同对称性和电荷的阳离子环糊精(CD)等环状寡糖与 NfpAB 的相互作用。对 CD 传输动力学的研究揭示了 NfpAB 的不对称几何形状和电荷分布。施加的电势由于静电相互作用促进了带正电荷的 CDs 与带负电荷的孔表面的附着。此外,通过及时反转施加的电势,附着的 CDs 会从孔中释放出来,从而产生瞬时阻断。从孔中释放 CD 取决于其电荷、大小和施加电势的大小。CD 附着和释放的动力学受施加电势的微调控制,证明了这些纳米孔的成功分子传输。有人提出,使用有机模板对蛋白质纳米孔进行这种受控的分子相互作用可能对纳米孔技术和单分子化学中的几种应用有用。