Division of Biosciences, University College London, London, UK.
Department of Chemistry, University College London, London, UK; Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
Neuropharmacology. 2018 Sep 1;139:194-204. doi: 10.1016/j.neuropharm.2018.07.009. Epub 2018 Jul 20.
Several previous studies have demonstrated that the activity of neurotransmitters acting on ligand-gated ion channels such as the nicotinic acetylcholine receptor (nAChR) can be altered by compounds binding to allosteric modulatory sites. In the case of α7 nAChRs, both positive and negative allosteric modulators (PAMs and NAMs) have been identified and have attracted considerable interest. A recent study, employing revised structural models of the transmembrane domain of the α7 nAChR in closed and open conformations, has provided support for an inter-subunit transmembrane allosteric binding site (Newcombe et al 2017). In the present study, we have performed virtual screening of the DrugBank database using pharmacophore queries that were based on the predicted binding mode of PAMs to α7 nAChR structural models. A total of 81 compounds were identified in the DrugBank database, of which the 25 highest-ranked hits corresponded to one of four previously-identified therapeutic compound groups (carbonic anhydrase inhibitors, cyclin-dependent kinase inhibitors, diuretics targeting the Na-K-Cl cotransporter, and fluoroquinolone antibiotics targeting DNA gyrase). The top-ranked compound from each of these four groups (DB04763, DB08122, furosemide and pefloxacin, respectively) was tested for its effects on human α7 nAChR expressed in Xenopus oocytes using two-electrode voltage-clamp electrophysiology. These studies, conducted with wild-type, mutant and chimeric receptors, resulted in all four compounds exerting allosteric modulatory effects. While DB04763, DB08122 and pefloxacin were antagonists, furosemide potentiated ACh responses. Our findings, supported by docking studies, are consistent with these compounds acting as PAMs and NAMs of the α7 nAChR via interaction with a transmembrane site.
先前的几项研究表明,作用于配体门控离子通道(如烟碱型乙酰胆碱受体(nAChR))的神经递质的活性可以通过与变构调节位点结合的化合物来改变。在α7 nAChR 的情况下,已经鉴定出正变构调节剂(PAMs)和负变构调节剂(NAMs),并引起了相当大的兴趣。最近的一项研究,采用了封闭和开放构象的α7 nAChR 跨膜域的修订结构模型,为跨膜变构结合位点的亚基间提供了支持(Newcombe 等人,2017 年)。在本研究中,我们使用基于 PAMs 与α7 nAChR 结构模型的预测结合模式的药效团查询对 DrugBank 数据库进行了虚拟筛选。在 DrugBank 数据库中总共鉴定出 81 种化合物,其中 25 种排名最高的命中化合物对应于之前鉴定的四种治疗性化合物组之一(碳酸酐酶抑制剂、细胞周期蛋白依赖性激酶抑制剂、靶向 Na-K-Cl 共转运体的利尿剂和靶向 DNA 拓扑异构酶的氟喹诺酮类抗生素)。从这四个组中的每一组(DB04763、DB08122、呋塞米和培氟沙星)中排名最高的化合物都通过双电极电压钳电生理学检测在表达于非洲爪蟾卵母细胞中的人α7 nAChR 上进行了测试。这些研究使用野生型、突变体和嵌合受体进行,结果表明所有四种化合物均具有变构调节作用。虽然 DB04763、DB08122 和培氟沙星是拮抗剂,但呋塞米增强了 ACh 的反应。我们的发现,通过对接研究得到支持,与这些化合物通过与跨膜位点相互作用作为α7 nAChR 的 PAMs 和 NAMs 是一致的。