Hoog Tanner G, Fredrickson Samantha J, Hsu Chih-Wei, Senger Steven M, Dickinson Mary E, Udan Ryan S
Department of Biology, Missouri State University, United States.
Department of Molecular Physiology and Biophysics, Baylor College of Medicine, United States.
Dev Biol. 2018 Oct 1;442(1):127-137. doi: 10.1016/j.ydbio.2018.07.007. Epub 2018 Jul 17.
Development of the embryonic heart involves an intricate network of biochemical and genetic cues to ensure its proper growth and morphogenesis. However, studies from avian and teleost models reveal that biomechanical force, namely hemodynamic loading (blood pressure and shear stress), plays a significant role in regulating heart development. To study how hemodynamic loading impacts development of the mammalian embryonic heart, we utilized mouse embryo culture and manipulation techniques and performed optical projection tomography imaging followed by morphometric analysis to determine how reduced-loading affects heart volume, myocardial thickness, trabeculation and looping. Our results reveal that hemodynamic loading can regulate these features at different thresholds. Intermediate levels of hemodynamic loading are sufficient to promote proper myocardial growth and heart size, but insufficient to promote looping and trabeculation. Whereas, low levels of hemodynamic loading fails to promote proper growth of the myocardium and heart size. These results reveal that the regulation of heart development by biomechanical force is conserved across many vertebrate classes, and this study begins to elucidate how these specific forces regulate development of the mammalian heart.
胚胎心脏的发育涉及一个复杂的生化和遗传信号网络,以确保其正常生长和形态发生。然而,来自鸟类和硬骨鱼模型的研究表明,生物力学力,即血流动力学负荷(血压和剪切应力),在调节心脏发育中起着重要作用。为了研究血流动力学负荷如何影响哺乳动物胚胎心脏的发育,我们利用小鼠胚胎培养和操作技术,并进行光学投影断层成像,随后进行形态测量分析,以确定负荷降低如何影响心脏体积、心肌厚度、小梁形成和心脏环化。我们的结果表明,血流动力学负荷可以在不同阈值下调节这些特征。中等水平的血流动力学负荷足以促进心肌的正常生长和心脏大小,但不足以促进心脏环化和小梁形成。而低水平的血流动力学负荷则无法促进心肌和心脏大小的正常生长。这些结果表明,生物力学力对心脏发育的调节在许多脊椎动物类群中是保守的,并且这项研究开始阐明这些特定的力如何调节哺乳动物心脏的发育。