Suppr超能文献

利用定量临床药理学提高神经退行性疾病早期临床开发的成功率。

Use of quantitative clinical pharmacology to improve early clinical development success in neurodegenerative diseases.

机构信息

a In Silico Biosciences, Computational Neuropharmacology , Berwyn , PA , USA.

b Early Development , Clinical Pharmacology, Roche Innovation Center , Basel , Switzerland.

出版信息

Expert Rev Clin Pharmacol. 2018 Aug;11(8):789-795. doi: 10.1080/17512433.2018.1501555. Epub 2018 Aug 3.

Abstract

The success rate of pharmaceutical Research & Development (R&D) is much lower compared to other industries such as micro-electronics or aeronautics with the probability of a successful clinical development to approval in central nervous system (CNS) disorders hovering in the single digits (7%). Areas covered: Inspired by adjacent engineering-based industries, we argue that quantitative modeling in CNS R&D might improve success rates. We will focus on quantitative techniques in early clinical development, such as PharmacoKinetic-PharmacoDynamic modeling, clinical trial simulation, model-based meta-analysis and the mechanism-based physiology-based pharmacokinetic modeling, and quantitative systems pharmacology. Expert commentary: Mechanism-based computer modeling rely less on existing clinical datasets, therefore can better generalize than Big Data analytics, including prospectively and quantitatively predicting the clinical outcome of new drugs. More specifically, exhaustive post-hoc analysis of failed trials using individual virtual human trial simulation could illuminate underlying causes such as lack of sufficient functional target engagement, negative pharmacodynamic interactions with comedications and genotypes, and mismatched patient population. These insights are beyond the capacity of artificial intelligence (AI) methods as they are many more possible combinations than subjects. Unlike 'black box' approaches in AI, mechanism-based platforms are transparent and based on biologically sound assumptions that can be interrogated.

摘要

制药研发(R&D)的成功率远低于微电子或航空等其他行业,中枢神经系统(CNS)疾病临床开发成功获得批准的概率徘徊在个位数(7%)。涵盖领域:受相邻工程行业的启发,我们认为 CNS R&D 中的定量建模可能会提高成功率。我们将专注于早期临床开发中的定量技术,如药代动力学-药效动力学建模、临床试验模拟、基于模型的荟萃分析和基于机制的基于生理学的药代动力学建模以及定量系统药理学。专家评论:基于机制的计算机建模较少依赖于现有临床数据集,因此比大数据分析更能概括,包括前瞻性和定量预测新药的临床结果。更具体地说,使用个体虚拟人体试验模拟对失败试验进行详尽的事后分析,可以阐明根本原因,例如缺乏足够的功能目标结合、与伴随药物和基因型的负药效学相互作用以及患者人群不匹配。这些见解超出了人工智能(AI)方法的能力范围,因为可能存在比研究对象更多的组合。与 AI 中的“黑盒”方法不同,基于机制的平台是透明的,并且基于可以进行询问的合理生物学假设。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验