Suppr超能文献

定量系统神经药理学在神经科学药物研发中的应用:现状、机遇与挑战。

Quantitative Systems Pharmacology for Neuroscience Drug Discovery and Development: Current Status, Opportunities, and Challenges.

机构信息

In Silico Biosciences, Berwyn, Pennsylvania, USA.

Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2020 Jan;9(1):5-20. doi: 10.1002/psp4.12478. Epub 2019 Nov 24.

Abstract

The substantial progress made in the basic sciences of the brain has yet to be adequately translated to successful clinical therapeutics to treat central nervous system (CNS) diseases. Possible explanations include the lack of quantitative and validated biomarkers, the subjective nature of many clinical endpoints, and complex pharmacokinetic/pharmacodynamic relationships, but also the possibility that highly selective drugs in the CNS do not reflect the complex interactions of different brain circuits. Although computational systems pharmacology modeling designed to capture essential components of complex biological systems has been increasingly accepted in pharmaceutical research and development for oncology, inflammation, and metabolic disorders, the uptake in the CNS field has been very modest. In this article, a cross-disciplinary group with representatives from academia, pharma, regulatory, and funding agencies make the case that the identification and exploitation of CNS therapeutic targets for drug discovery and development can benefit greatly from a system and network approach that can span the gap between molecular pathways and the neuronal circuits that ultimately regulate brain activity and behavior. The National Institute of Neurological Disorders and Stroke (NINDS), in collaboration with the National Institute on Aging (NIA), National Institute of Mental Health (NIMH), National Institute on Drug Abuse (NIDA), and National Center for Advancing Translational Sciences (NCATS), convened a workshop to explore and evaluate the potential of a quantitative systems pharmacology (QSP) approach to CNS drug discovery and development. The objective of the workshop was to identify the challenges and opportunities of QSP as an approach to accelerate drug discovery and development in the field of CNS disorders. In particular, the workshop examined the potential for computational neuroscience to perform QSP-based interrogation of the mechanism of action for CNS diseases, along with a more accurate and comprehensive method for evaluating drug effects and optimizing the design of clinical trials. Following up on an earlier white paper on the use of QSP in general disease mechanism of action and drug discovery, this report focuses on new applications, opportunities, and the accompanying limitations of QSP as an approach to drug development in the CNS therapeutic area based on the discussions in the workshop with various stakeholders.

摘要

大脑基础科学已经取得了实质性的进展,但尚未成功转化为治疗中枢神经系统 (CNS) 疾病的临床治疗方法。可能的解释包括缺乏定量和经过验证的生物标志物、许多临床终点的主观性,以及复杂的药代动力学/药效学关系,但也有可能中枢神经系统中高度选择性的药物不能反映不同脑回路的复杂相互作用。尽管旨在捕获复杂生物系统基本组件的计算系统药理学模型在肿瘤学、炎症和代谢紊乱的药物研发中越来越被接受,但在中枢神经系统领域的应用却非常有限。在本文中,一个由来自学术界、制药、监管和资助机构的代表组成的跨学科小组认为,通过系统和网络方法,可以从识别和利用中枢神经系统治疗靶点开始,为药物发现和开发带来巨大的益处,这种方法可以跨越分子途径和最终调节大脑活动和行为的神经元回路之间的差距。美国国立神经病学与中风研究所 (NINDS) 与美国国立老龄化研究所 (NIA)、美国国立精神卫生研究所 (NIMH)、美国国立药物滥用研究所 (NIDA) 和国家推进转化科学中心 (NCATS) 合作,举办了一次研讨会,以探索和评估定量系统药理学 (QSP) 方法在中枢神经系统药物发现和开发中的潜力。研讨会的目的是确定 QSP 作为一种方法在中枢神经系统疾病领域加速药物发现和开发的挑战和机遇。特别是,研讨会考察了计算神经科学在中枢神经系统疾病作用机制的 QSP 基础询问方面的潜力,以及更准确和全面的方法来评估药物效应和优化临床试验设计。继之前关于 QSP 在一般疾病作用机制和药物发现中的应用的白皮书之后,本报告重点介绍了 QSP 作为一种方法在中枢神经系统治疗领域药物开发中的新应用、机会和伴随的局限性,这是基于研讨会与各利益相关者的讨论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验