Suppr超能文献

基于 SVM 和深度学习模型集成提取化学-蛋白质关系。

Extracting chemical-protein relations with ensembles of SVM and deep learning models.

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.

Department of Computer Science, University of Kentucky, Lexington, KY, USA.

出版信息

Database (Oxford). 2018 Jan 1;2018. doi: 10.1093/database/bay073.

Abstract

Mining relations between chemicals and proteins from the biomedical literature is an increasingly important task. The CHEMPROT track at BioCreative VI aims to promote the development and evaluation of systems that can automatically detect the chemical-protein relations in running text (PubMed abstracts). This work describes our CHEMPROT track entry, which is an ensemble of three systems, including a support vector machine, a convolutional neural network, and a recurrent neural network. Their output is combined using majority voting or stacking for final predictions. Our CHEMPROT system obtained 0.7266 in precision and 0.5735 in recall for an F-score of 0.6410 during the challenge, demonstrating the effectiveness of machine learning-based approaches for automatic relation extraction from biomedical literature and achieving the highest performance in the task during the 2017 challenge.Database URL: http://www.biocreative.org/tasks/biocreative-vi/track-5/.

摘要

从生物医学文献中挖掘化学物质和蛋白质之间的关系是一项日益重要的任务。BioCreative VI 的 CHEMPROT 轨道旨在促进开发和评估可以自动检测生物医学文献(PubMed 摘要)中化学-蛋白质关系的系统。这项工作描述了我们的 CHEMPROT 轨道条目,它是三个系统的集合,包括支持向量机、卷积神经网络和循环神经网络。它们的输出使用多数投票或堆叠进行最终预测。在挑战期间,我们的 CHEMPROT 系统在精度方面获得了 0.7266,在召回率方面获得了 0.5735,F 分数为 0.6410,证明了基于机器学习的方法在自动从生物医学文献中提取关系方面的有效性,并在 2017 年挑战中实现了该任务的最高性能。数据库 URL:http://www.biocreative.org/tasks/biocreative-vi/track-5/。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaf8/6051439/7a76dea472da/bay073f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验