School of Computing Science and Engineering, Galgotias University, Greater Noida, UP, India.
Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, P. O. Box 51178, Riyadh, 11543, Saudi Arabia.
BMC Med Inform Decis Mak. 2024 Aug 27;24(1):236. doi: 10.1186/s12911-024-02631-y.
Efforts to enhance the accuracy of protein sequence classification are of utmost importance in driving forward biological analyses and facilitating significant medical advancements. This study presents a cutting-edge model called ProtICNN-BiLSTM, which combines attention-based Improved Convolutional Neural Networks (ICNN) and Bidirectional Long Short-Term Memory (BiLSTM) units seamlessly. Our main goal is to improve the accuracy of protein sequence classification by carefully optimizing performance through Bayesian Optimisation. ProtICNN-BiLSTM combines the power of CNN and BiLSTM architectures to effectively capture local and global protein sequence dependencies. In the proposed model, the ICNN component uses convolutional operations to identify local patterns. Captures long-range associations by analyzing sequence data forward and backwards. In advanced biological studies, Bayesian Optimisation optimizes model hyperparameters for efficiency and robustness. The model was extensively confirmed with PDB-14,189 and other protein data. We found that ProtICNN-BiLSTM outperforms traditional categorization models. Bayesian Optimization's fine-tuning and seamless integration of local and global sequence information make it effective. The precision of ProtICNN-BiLSTM improves comparative protein sequence categorization. The study improves computational bioinformatics for complex biological analysis. Good results from the ProtICNN-BiLSTM model improve protein sequence categorization. This powerful tool could improve medical and biological research. The breakthrough protein sequence classification model is ProtICNN-BiLSTM. Bayesian optimization, ICNN, and BiLSTM analyze biological data accurately.
努力提高蛋白质序列分类的准确性对于推动生物分析和促进重大医学进展至关重要。本研究提出了一种名为 ProtICNN-BiLSTM 的前沿模型,它无缝地结合了基于注意力的改进卷积神经网络(ICNN)和双向长短期记忆(BiLSTM)单元。我们的主要目标是通过仔细优化性能(通过贝叶斯优化)来提高蛋白质序列分类的准确性。ProtICNN-BiLSTM 结合了 CNN 和 BiLSTM 架构的优势,有效地捕获了局部和全局蛋白质序列依赖关系。在提出的模型中,ICNN 组件使用卷积操作来识别局部模式。通过向前和向后分析序列数据来捕获长程关联。在高级生物研究中,贝叶斯优化优化模型超参数以提高效率和鲁棒性。该模型经过广泛的 PDB-14,189 和其他蛋白质数据验证。我们发现 ProtICNN-BiLSTM 优于传统分类模型。贝叶斯优化的微调以及局部和全局序列信息的无缝集成使其具有有效性。ProtICNN-BiLSTM 的精度提高了比较蛋白质序列分类。该研究改进了用于复杂生物分析的计算生物信息学。ProtICNN-BiLSTM 模型的良好结果提高了蛋白质序列分类。这种强大的工具可以改进医学和生物学研究。突破性的蛋白质序列分类模型是 ProtICNN-BiLSTM。贝叶斯优化、ICNN 和 BiLSTM 准确地分析生物数据。