Suppr超能文献

自由能原理下大脑中的认知动力学

Recognition Dynamics in the Brain under the Free Energy Principle.

作者信息

Kim Chang Sub

机构信息

Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea.

出版信息

Neural Comput. 2018 Oct;30(10):2616-2659. doi: 10.1162/neco_a_01115. Epub 2018 Jul 18.

Abstract

We formulate the computational processes of perception in the framework of the principle of least action by postulating the theoretical action as a time integral of the variational free energy in the neurosciences. The free energy principle is accordingly rephrased, on autopoetic grounds, as follows: all viable organisms attempt to minimize their sensory uncertainty about an unpredictable environment over a temporal horizon. By taking the variation of informational action, we derive neural recognition dynamics (RD), which by construction reduces to the Bayesian filtering of external states from noisy sensory inputs. Consequently, we effectively cast the gradient-descent scheme of minimizing the free energy into Hamiltonian mechanics by addressing only the positions and momenta of the organisms' representations of the causal environment. To demonstrate the utility of our theory, we show how the RD may be implemented in a neuronally based biophysical model at a single-cell level and subsequently in a coarse-grained, hierarchical architecture of the brain. We also present numerical solutions to the RD for a model brain and analyze the perceptual trajectories around attractors in neural state space.

摘要

我们通过假定理论作用量为神经科学中变分自由能的时间积分,在最小作用量原理的框架内阐述感知的计算过程。相应地,基于自创生的理由,自由能原理可重新表述如下:所有有生命的机体都试图在一个时间范围内将其关于不可预测环境的感官不确定性降至最低。通过对信息作用量取变分,我们推导出神经识别动力学(RD),从构建上看,它可简化为从有噪声的感官输入中对外部状态进行贝叶斯滤波。因此,我们仅通过处理机体对因果环境的表征的位置和动量,就有效地将最小化自由能的梯度下降方案转化为哈密顿力学。为了证明我们理论的实用性,我们展示了RD如何在单细胞水平上基于神经元的生物物理模型中实现,随后又如何在大脑的粗粒度分层架构中实现。我们还给出了模型大脑的RD的数值解,并分析了神经状态空间中吸引子周围的感知轨迹。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验