Suppr超能文献

用于移动应用的高容量彩色二维码的稳健快速解码

Robust and Fast Decoding of High-Capacity Color QR Codes for Mobile Applications.

作者信息

Yang Zhibo, Xu Huanle, Deng Jianyuan, Loy Chen Change, Lau Wing Cheong

出版信息

IEEE Trans Image Process. 2018 Jul 18. doi: 10.1109/TIP.2018.2855419.

Abstract

The use of color in QR codes brings extra data capacity, but also inflicts tremendous challenges on the decoding process due to chromatic distortion-cross-channel color interference and illumination variation. Particularly, we further discover a new type of chromatic distortion in high-density color QR codes-cross-module color interference-caused by the high density which also makes the geometric distortion correction more challenging. To address these problems, we propose two approaches, LSVM-CMI and QDA-CMI, which jointly model these different types of chromatic distortion. Extended from SVM and QDA, respectively, both LSVM-CMI and QDA-CMI optimize over a particular objective function and learn a color classifier. Furthermore, a robust geometric transformation method and several pipeline refinements are proposed to boost the decoding performance for mobile applications. We put forth and implement a framework for high-capacity color QR codes equipped with our methods, called HiQ. To evaluate the performance of HiQ, we collect a challenging large-scale color QR code dataset, CUHK-CQRC, which consists of 5390 high-density color QR code samples. The comparison with the baseline method [2] on CUHK-CQRC shows that HiQ at least outperforms [2] by 188% in decoding success rate and 60% in bit error rate. Our implementation of HiQ in iOS and Android also demonstrates the effectiveness of our framework in real-world applications.

摘要

二维码中颜色的使用增加了数据容量,但由于色度失真(跨通道颜色干扰和光照变化),给解码过程带来了巨大挑战。特别是,我们进一步发现了高密度彩色二维码中的一种新型色度失真——跨模块颜色干扰,它是由高密度引起的,这也使得几何失真校正更具挑战性。为了解决这些问题,我们提出了两种方法,LSVM-CMI和QDA-CMI,它们联合对这些不同类型的色度失真进行建模。LSVM-CMI和QDA-CMI分别从支持向量机(SVM)和二次判别分析(QDA)扩展而来,它们都针对特定目标函数进行优化并学习颜色分类器。此外,还提出了一种鲁棒的几何变换方法和一些流程优化措施,以提高移动应用的解码性能。我们提出并实现了一个配备我们方法的高容量彩色二维码框架,称为HiQ。为了评估HiQ的性能,我们收集了一个具有挑战性的大规模彩色二维码数据集CUHK-CQRC,它由5390个高密度彩色二维码样本组成。在CUHK-CQRC上与基线方法[2]的比较表明,HiQ在解码成功率上至少比[2]高出188%,在误码率上高出60%。我们在iOS和安卓系统上对HiQ的实现也证明了我们的框架在实际应用中的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验