Ryua Sookyung, Kang Je-Won
IEEE Trans Image Process. 2018 Jul 18. doi: 10.1109/TIP.2018.2857404.
In this paper we propose a machine learning-based fast intra-prediction mode decision algorithm, using random forest that is an ensemble model of randomized decision trees. The random forest is used to estimate an intra-prediction mode from a prediction unit and to reduce encoding time significantly by avoiding the intensive Rate-Distortion optimization of a number of intra-prediction modes. To this aim, we develop a randomized tree model including parameterized split functions at nodes to learn directional block-based features. The feature uses only four pixels reflecting a directional property of a block, and, thus the evaluation is fast and efficient. To integrate the proposed technique into the conventional video coding standard frameworks, the intra-prediction mode derived from the proposed technique, called an inferred mode (IM), is used to shrink the pool of the candidate modes before carrying out the Rate-Distortion (R-D) optimization. The proposed technique is implemented into the High Efficiency Video Coding Test Model (HM) reference software of the state-of-the-art video coding standard and Joint Exploration Model (JEM) reference software, by integrating the random forest trained off-line into the codecs. Experimental results demonstrate that the proposed technique achieves significant encoding time reduction with only slight coding loss as compared the reference software models.
在本文中,我们提出了一种基于机器学习的快速帧内预测模式决策算法,该算法使用随机森林,它是一种随机决策树的集成模型。随机森林用于从预测单元估计帧内预测模式,并通过避免对多个帧内预测模式进行密集的率失真优化来显著减少编码时间。为此,我们开发了一种随机树模型,该模型在节点处包含参数化分割函数,以学习基于块的方向特征。该特征仅使用反映块方向属性的四个像素,因此评估快速且高效。为了将所提出的技术集成到传统视频编码标准框架中,从所提出的技术导出的帧内预测模式,称为推断模式(IM),用于在进行率失真(R-D)优化之前缩小候选模式池。通过将离线训练的随机森林集成到编解码器中,将所提出的技术实现到最新视频编码标准的高效视频编码测试模型(HM)参考软件和联合探索模型(JEM)参考软件中。实验结果表明,与参考软件模型相比,所提出的技术在仅产生轻微编码损失的情况下实现了显著的编码时间减少。